The relationship between antioxidant trace elements (ATE) and metabolic disease is subtle and complex due to overproduction of reactive oxygen species (ROS). In type 2 diabetes (T2D), the relationship between ATE and insulin-like trace elements is very complex during oxidative stress (OS), being mediated by hyperglycemia, dyslipidemia and inflammation. The important role assigned to ATE (zinc, selenium, copper, manganese and chromium) by their involvement at different levels: Hemodynamic homeostasis (endothelial function and protein glycation), energy metabolism (carbohydrate and lipid tolerance) and enzymatic antioxidant protection [superoxide dismutase (SOD), glutathione peroxidase (GPx)]. The ROS-mediated cellular signaling process is crucial. Manganese and selenium levels abnormalities might to be useful indicators of oxidative damage. Two major factors were suggested: lack of Mn bioavailability leading to the decrease of mitochondrial SOD activity (cytosolic SOD remains active), and low blood selenium level implying a decrease in GPx activity. In T2D pathophysiology, it appears that antioxidant defense is preserved in the cytosol (Cu/Zn-SOD) in T2D, whereas it is impaired in mitochondria (Mn-SOD) in the three pathologies, which make this cell organelle a true ATE therapeutic target. Future challenges require the in-depth investigations of mitochondrial mechanisms, involved the antioxidant trace elements signaling pathways in T2D pathophysiology.