Natural Language Processing for Requirements Engineering (NLP4RE) is an area of research and development that seeks to apply natural language processing (NLP) techniques, tools, and resources to the requirements engineering (RE) process, to support human analysts to carry out various linguistic analysis tasks on textual requirements documents, such as detecting language issues, identifying key domain concepts, and establishing requirements traceability links. This article reports on a mapping study that surveys the landscape of NLP4RE research to provide a holistic understanding of the field. Following the guidance of systematic review, the mapping study is directed by five research questions, cutting across five aspects of NLP4RE research, concerning the state of the literature, the state of empirical research, the research focus, the state of tool development, and the usage of NLP technologies. Our main results are as follows: (i) we identify a total of 404 primary studies relevant to NLP4RE, which were published over the past 36 years and from 170 different venues; (ii) most of these studies (67.08%) are solution proposals, assessed by a laboratory experiment or an example application, while only a small percentage (7%) are assessed in industrial settings; (iii) a large proportion of the studies (42.70%) focus on the requirements analysis phase, with quality defect detection as their central task and requirements specification as their commonly processed document type; (iv) 130 NLP4RE tools (i.e., RE specific NLP tools) are extracted from these studies, but only 17 of them (13.08%) are available for download; (v) 231 different NLP technologies are also identified, comprising 140 NLP techniques, 66 NLP tools, and 25 NLP resources, but most of them—particularly those novel NLP techniques and specialized tools—are used infrequently; by contrast, commonly used NLP technologies are traditional analysis techniques (e.g., POS tagging and tokenization), general-purpose tools (e.g., Stanford CoreNLP and GATE) and generic language lexicons (WordNet and British National Corpus). The mapping study not only provides a collection of the literature in NLP4RE but also, more importantly, establishes a structure to frame the existing literature through categorization, synthesis and conceptualization of the main theoretical concepts and relationships that encompass both RE and NLP aspects. Our work thus produces a conceptual framework of NLP4RE. The framework is used to identify research gaps and directions, highlight technology transfer needs, and encourage more synergies between the RE community, the NLP one, and the software and systems practitioners. Our results can be used as a starting point to frame future studies according to a well-defined terminology and can be expanded as new technologies and novel solutions emerge.
The research on data mining has successfully yielded numerous tools, algorithms, methods and approaches for handling large amounts of data for various purposeful use and  problem solving. Data mining has become an integral part of many application domains such as data ware housing, predictive analytics, business intelligence, bio-informatics and decision support systems. Prime objective of data mining is to effectively handle large scale data, extract actionable patterns, and gain insightful knowledge. Data mining is part and parcel of knowledge discovery in databases (KDD) process. Success and improved decision making normally depends on how quickly one can discover insights from data. These insights could be used to drive better actions which can be used in operational processes and even predict future behaviour. This paper presents an overview of various algorithms necessary for handling large data sets. These algorithms define various structures and methods implemented to handle big data. The review also discusses the general strengths and limitations of these algorithms. This paper can quickly guide or an eye opener to the data mining researchers on which algorithm(s) to select and apply in solving the problems they will be investigating.
Context: End-user service composition (EUSC) is a service-oriented paradigm that aims to empower end users and allow them to compose their own web applications from reusable service components. User studies have been used to evaluate EUSC tools and processes. Such an approach should benefit software development, because incorporating end users’ feedback into software development should make software more useful and usable. Problem: There is a gap in our understanding of what constitutes a user study and how a good user study should be designed, conducted, and reported. Goal: This article aims to address this gap. Method: The article presents a systematic review of 47 selected user studies for EUSC. Guided by a review framework, the article systematically and consistently assesses the focus, methodology and cohesion of each of these studies. Results: The article concludes that the focus of these studies is clear, but their methodology is incomplete and inadequate, their overall cohesion is poor. The findings lead to the development of a design framework and a set of questions for the design, reporting, and review of good user studies for EUSC. The detailed analysis and the insights obtained from the analysis should be applicable to the design of user studies for service-oriented systems as well and indeed for any user studies related to software artifacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.