Pantograph-catenary arc fault is the primary factor threatening the stability of the power transmission for high-speed railway. The motion characteristics of the pantographcatenary arc under low air pressure and strong airflow is significantly different from the case under atmospheric pressure. In this paper, an experimental platform of pantograph-catenary arc was built to investigate arc root position-time and arc column longitudinal drift height-time characteristic curves under different air pressures and airflow velocites. Via analysing the corresponding results, it can be found that there are different arc root-arc column traction mechanisms at different stages of arc development. The arcing time and arc root stagnation time under low air pressure are significantly longer than the case under atmospheric pressure, resulting in more serious electrode ablation. The arc column longitudinal drift velocity and height are greater with the increase of airflow velocity. Two typical irregular arc motion phenomena-arc root jumping and arc reignition are observed. To clarify the internal mechanism of the above phenomenon, a magnetohydrodynamics (MHD) model of the pantograph-catenary arc was lauched, the influence mechanism of the pantograph-catenary arc temperature and voltage are studied, and the physical process of arc temperature oscillation is analysed. The research results provide theoretical support for arc protection in high-altitude areas.
The fault caused by the pantograph-catenary arc is the main factor that threatens the stability of high-speed railway energy transmission. Pantograph-catenary arc vertical drift is more severe than the case under normal pressure, as it is easy to develop the rigid busbar, which may lead to the flashover occurring around the support insulators. A pantograph-catenary arc experiment and diagnosis platform was established, which can simulate low pressure and strong airflow environment, and meanwhile, the variation law of arc drift height with time under different air pressure and airflow velocity is analyzed. Moreover, arc drift characteristics and influencing factors were explored. The physical process of the arc column drifting to the rigid busbar with the jumping mechanism of the arc root on the rigid busbar is summarized. In order to further explore the mechanism of the above physical process, a multi-field stress coupling model was established, as the multi-stress variation law of arc was quantitatively evaluated. The dynamic action mechanism of multi-field stress on arc drifting characteristics was explored, as the physical mechanism of arc drifting under low pressure was theoretically explained. The research results provide theoretical support for arc suppression in high-altitude areas.
As the unique power entrance, the pantograph–catenary electrical contact system maintains the efficiency and reliability of power transmission for the high-speed train. Along with the fast development of high-speed railways all over the world, some commercialized lines are built for covering the remote places under harsh environment, especially in China; these environmental elements including wind, sand, rain, thunder, ice and snow need to be considered during the design of the pantograph–catenary system. The pantograph–catenary system includes the pantograph, the contact wire and the interface—pantograph slide. As the key component, this pantograph slide plays a critical role in reliable power transmission under dynamic condition. The fundamental material characteristics of the pantograph slide and contact wire such as electrical conductivity, impact resistance, wear resistance, etc., directly determine the sliding electrical contact performance of the pantograph–catenary system; meanwhile, different detection methods of the pantograph–catenary system are crucial for the reliability of service and maintenance. In addition, the challenges brought from extreme operational conditions are discussed, taking the Sichuan–Tibet Railway currently under construction as a special example with the high-altitude climate. The outlook for developing the ultra-high-speed train equipped with the novel pantograph–catenary system which can address the harsher operational environment is also involved. This paper has provided a comprehensive review of the high-speed railway pantograph–catenary systems, including its progress, challenges, outlooks in the history and future.
Electrical contact resistance (ECR) and discharge are the key parameters of electrical contact performance for carbon-copper (C-Cu) contacts in the pantograph-contact line system. The change in physical and chemical properties of the C-Cu interface caused by interface temperature is the main reason for the variation in ECR and discharge. In this paper, an electric contact test platform based on interface temperature control was established. The influence of interface temperature on ECR and the discharge characteristics under different current amplitudes were studied. There are opposite trends in the change in ECR and the discharge characteristics with interface temperature under different currents, which results from the competition between interface oxidation and a softening of the contact spots caused by high temperature. The trend of interface oxidation with temperature was analyzed via the quantitative analysis of the composition and content of the oxides at the C-Cu contact interface and is discussed here. The relationship between interface oxidation, ECR, and discharge characteristics was studied. Furthermore, a finite element simulation model was established for estimating the temperature distribution throughout the C-Cu contact spots. The competitive process of the softening and oxidation of the contact spots at different temperatures and currents was analyzed, and the variation mechanism of the ECR and discharge characteristics with interface temperature was studied.
As the unique power entrance, the pantograph–catenary plays a vital role in providing traction power for high-speed railways. Along with the operational velocity of trains constantly increasing, the poor contact between the contact wire and the pantograph strip happens frequently due to the “rigid point” existing on the contact wire, forming the “off-line” phenomenon. The off-line phenomenon is normally accompanied by the pantograph–catenary arc occurring, which seriously threatens the safety of the power supply for the high-speed train. Nowadays, as some railways have been built in remote places at high altitude, the motion characteristics of the pantograph–catenary arc under the sub-atmospheric pressure with strong airflow are extremely different from the case under normal pressure. Herein, a pantograph–catenary arc experimental platform is built for observing the evolutionary process of the arc under the sub-atmospheric pressure strong-airflow condition. The impact brought from different air pressures and airflows on the arc is analyzed, as the experimental results show that the pantograph–catenary arc has different motion characteristics when the arcing process is at different stages. To further explore the reason resulting in the varying motion characteristics of the arc, a multi-stress coupled force analysis model is established, with the consideration of the influence of air pressure, wind load, thermal buoyancy, air resistance, arc self-magnetism, etc. From the perspective of force acting on the arc, the arc formation mechanism at the development evolutionary stages is investigated under sub-atmospheric pressure strong-airflow conditions, which lays a theoretical foundation for effectively restraining the pantograph–catenary arc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.