Atopic dermatitis (AD) is characterized by reduced barrier function, reduced innate immune activation, and susceptibility to Staphylococcus aureus. Host susceptibility factors are suggested by monogenic disorders associated with AD-like phenotypes and can be medically modulated. S. aureus contributes to AD pathogenesis and can be mitigated by antibiotics and bleach baths. Recent work has revealed that the skin microbiome differs significantly between healthy controls and patients with AD, including decreased Gram-negative bacteria in AD. However, little is known about the potential therapeutic benefit of microbiome modulation. To evaluate whether parameters of AD pathogenesis are altered after exposure to different culturable Gram-negative bacteria (CGN) collected from human skin, CGN were collected from healthy controls and patients with AD. Then, effects on cellular and culture-based models of immune, epithelial, and bacterial function were evaluated. Representative strains were evaluated in the MC903 mouse model of AD. We found that CGN taken from healthy volunteers but not from patients with AD were associated with enhanced barrier function, innate immunity activation, and control of S. aureus. Treatment with CGN from healthy controls improved outcomes in a mouse model of AD. These findings suggest that a live-biotherapeutic approach may hold promise for treatment of patients with AD.
BackgroundCommensal Gram-negative (CGN) microbiota have been identified on human skin by DNA sequencing; however, methods to reliably culture viable Gram-negative skin organisms have not been previously described.ResultsThrough the use of selective antibiotics and minimal media we developed methods to culture CGN from skin swabs. We identified several previously uncharacterized CGN at the species level by optimizing growth conditions and limiting the inhibitory effects of nutrient shock, temperature, and bacterial competition, factors that may have previously limited CGN isolation from skin cultures.ConclusionsOur protocol will permit future functional studies on the influences of CGN on skin homeostasis and disease.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-016-0684-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.