Most experimental models of spinal cord injury (SCI) in rodents induce damage in the thoracic cord and subsequently examine hindlimb function as an indicator of recovery. In these models, functional recovery is most attributable to white-matter preservation and is less influenced by grey-matter sparing. In contrast, most clinical cases of SCI occur at the lower cervical levels, a region in which both grey-matter and white-matter sparing contribute to functional motor recovery. Thus experimental cervical SCI models are beginning to be developed and used to assess protective and pharmacological interventions following SCI. The objective of this study was to characterize a model of graded cervical hemicontusion SCI with regard to several histological and behavioral outcome measures, including novel forelimb behavioral tasks. Using a commercially available rodent spinal cord impactor, adult male rats received hemicontusion SCI at vertebral level C5 at 100, 200, or 300 kdyn force, to produce mild, moderate, or severe injury severities. Tests of skilled and unskilled forelimb and locomotor function were employed to assess functional recovery, and spinal cord tissue was collected to assess lesion severity. Deficits in skilled and unskilled forelimb function and locomotion relating to injury severity were observed, as well as decreases in neuronal numbers, white-matter area, and white-matter gliosis. Significant correlations were observed between behavioral and histological data. Taken together, these data suggest that the forelimb functional and locomotor assessments employed here are sensitive enough to measure functional changes, and that this hemicontusion model can be used to evaluate potential protective and regenerative therapeutic strategies.
The majority of spinal cord injuries (SCIs) in the clinic occur at the lower cervical levels, resulting in both white and gray matter disruption. In contrast, most experimental models of SCI in rodents induce damage in the thoracic cord, resulting primarily in white matter disruption. To address this disparity, experimental cervical SCI models have been developed. Thus, we used a recently characterized model of cervical hemicontusion SCI in adult male rats to assess the potential therapeutic effect of post-SCI administration of 17β-estradiol. Rats received a hemicontusion at the level of the fifth cervical vertebra (C5) followed by administration of 17β-estradiol via a slow release pellet (0.5 or 5.0 mg/pellet) beginning at 30 minutes post-SCI. Behavioral evaluation of skilled and unskilled forelimb function and locomotor function were conducted for 7 weeks after SCI. Upon conclusion of the behavioral assessments, spinal cords were collected and histochemistry and stereology were conducted to evaluate the effect of treatment on the lesion characteristics. We found that post-SCI administration of 17β-estradiol decreased neuronal loss in the ventral horn, decreased reactive astrogliosis, decreased the immune response, and increased white mater sparing at the lesion epicenter. Additionally, post-SCI administration of 17β-estradiol improved skilled forelimb function and locomotor function. Taken together, these data suggest that post-SCI administration of 17β-estradiol protected both the gray and white matter in cervical SCI. Moreover, this treatment improved function on skilled motor tasks that involve both gray and white matter components, suggesting that this is likely a highly clinically relevant protective strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.