SummaryBreast cancer progression, treatment resistance, and relapse are thought to originate from a small population of tumor cells, breast cancer stem cells (BCSCs). Identification of factors critical for BCSC function is therefore vital for the development of therapies. Here, we identify the arginine methyltransferase PRMT5 as a key in vitro and in vivo regulator of BCSC proliferation and self-renewal and establish FOXP1, a winged helix/forkhead transcription factor, as a critical effector of PRMT5-induced BCSC function. Mechanistically, PRMT5 recruitment to the FOXP1 promoter facilitates H3R2me2s, SET1 recruitment, H3K4me3, and gene expression. Our findings are clinically significant, as PRMT5 depletion within established tumor xenografts or treatment of patient-derived BCSCs with a pre-clinical PRMT5 inhibitor substantially reduces BCSC numbers. Together, our findings highlight the importance of PRMT5 in BCSC maintenance and suggest that small-molecule inhibitors of PRMT5 or downstream targets could be an effective strategy eliminating this cancer-causing population.
Metabolomic characteristics in boar spermatozoa were studied using [1,2-13 C 2 ]glucose and mass isotopomer analysis. In boar spermatozoa, glycolysis was the main pathway of glucose utilization producing lactate/pyruvate, whereas no gluconeogenesis was seen. Slight glycogen synthesis through the direct pathway and some incorporation of pyruvate into the Krebs cycle also took place. Neither RNA ribose-5-phosphate nor fatty acid synthesis from glucose occurred despite the detection of pyruvate dehydrogenase activity. In contrast to the known metabolic activities in dog sperm, boar spermatozoa have low levels of energy production and biosynthetic activities suggesting two di¡erent metabolic pro¢les for the two di¡erent phenotypes.
SummaryProtein post-translation modification plays an important role in regulating DNA repair; however, the role of arginine methylation in this process is poorly understood. Here we identify the arginine methyltransferase PRMT5 as a key regulator of homologous recombination (HR)-mediated double-strand break (DSB) repair, which is mediated through its ability to methylate RUVBL1, a cofactor of the TIP60 complex. We show that PRMT5 targets RUVBL1 for methylation at position R205, which facilitates TIP60-dependent mobilization of 53BP1 from DNA breaks, promoting HR. Mechanistically, we demonstrate that PRMT5-directed methylation of RUVBL1 is critically required for the acetyltransferase activity of TIP60, promoting histone H4K16 acetylation, which facilities 53BP1 displacement from DSBs. Interestingly, RUVBL1 methylation did not affect the ability of TIP60 to facilitate ATM activation. Taken together, our findings reveal the importance of PRMT5-mediated arginine methylation during DSB repair pathway choice through its ability to regulate acetylation-dependent control of 53BP1 localization.
It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (“exon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing.
On March 23, 2022, the United States Food and Drug Administration (FDA) approved Pluvicto (lutetium Lu 177 vipivotide tetraxetan, also known as 177Lu-PSMA-617) for the treatment of adult patients with prostate-specific membrane antigen (PSMA)-positive metastatic castration-resistant prostate cancer (mCRPC) who have been treated with androgen receptor pathway inhibition and taxane-based chemotherapy. The recommended 177Lu-PSMA-617 dose is 7.4 gigabecquerels (GBq; 200 mCi) intravenously every 6 weeks for up to 6 doses, or until disease progression or unacceptable toxicity. The FDA granted traditional approval based on VISION (NCT03511664), which was a randomized (2:1), multicenter, open-label trial that assessed the efficacy and safety of 177Lu-PSMA-617 plus best standard of care (BSoC) (n=551) or BSoC alone (n=280) in men with progressive, PSMA-positive mCRPC. Patients were required to have received ≥1 androgen receptor pathway inhibitor, and 1 or 2 prior taxane-based chemotherapy regimens. There was a statistically significant and clinically meaningful improvement in overall survival (OS) with a median OS of 15.3 months in the 177Lu-PSMA-617 plus BSoC arm and 11.3 months in the BSoC arm, respectively (Hazard ratio: 0.62, 95% CI: 0.52, 0.74, p<0.001). The most common adverse reactions (≥20%) occurring at a higher incidence in patients receiving 177Lu-PSMA-617 were fatigue, dry mouth, nausea, anemia, decreased appetite, and constipation. The most common laboratory abnormalities that worsened from baseline in ≥30% of patients receiving 177Lu-PSMA-617 were decreased lymphocytes, decreased hemoglobin, decreased leukocytes, decreased platelets, decreased calcium, and decreased sodium. This article summarizes the FDA review of data supporting traditional approval of 177Lu-PSMA-617 for this indication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.