Hyperglycemia-driven VEGF-A production is mediated by elevated O-GlcNAc modification of the Sp1 transcription factor. This mechanism may be significant in the pathogenesis of preclinical DR through VEGF-A upregulation.
Nonthermal plasma is a versatile tool that holds great biomedical potential for ophthalmology, where it is being investigated for wound healing and sterilization and is already in use for ocular microsurgery. The anti-HSV-1 activity of DBD plasma demonstrated here could be directly translated to the clinic for use against drug-resistant herpes keratitis.
This study identifies ATM as a potential target for the treatment of HK. ATM inhibition by KU-55933 reduces epithelial infection and stromal disease severity without producing appreciable toxicity. These findings warrant further investigations into the DNA damage response as an area for therapeutic intervention in herpetic ocular diseases.
Sp1 is a ubiquitous transcription factor that regulates many genes involved in apoptosis and senescence. Sp1 also has a role in the DNA damage response; at low levels of DNA damage, Sp1 is phosphorylated by ATM and localizes to double-strand break sites where it facilitates DNA double-strand-break repair. Depletion of Sp1 increases the sensitivity of cells to DNA damage, whereas overexpression of Sp1 can drive cells into apoptosis. In response to a variety of stimuli, Sp1 can be regulated through proteolytic cleavage by caspases and/or degradation. Here, we show that activation of apoptosis through DNA damage or TRAIL-mediated activation of the extrinsic apoptotic pathway induces caspase-mediated cleavage of Sp1. Cleavage of Sp1 was coincident with the appearance of cleaved caspase 3, and produced a 70 kDa Sp1 product. In vitro analysis revealed a novel caspase cleavage site at aspartic acid 183. Mutation of aspartic acid 183 to alanine conferred resistance to cleavage, and ectopic expression of the Sp1 D183A rendered cells resistant to apoptotic stimuli, indicating that Sp1 cleavage is involved in the induction of apoptosis. The 70 kDa product resulting from caspase cleavage of Sp1 comprises amino acids 184-785. This truncated form, designated Sp1-70C, which retains transcriptional activity, induced apoptosis when overexpressed in normal epithelial cells, whereas Sp1D183A induced significantly less apoptosis. Together, these data reveal a new caspase cleavage site in Sp1 and demonstrate for the first time that caspase cleavage of Sp1 promotes apoptosis.
Purpose
Herpes simplex virus type I (HSV-1) infection of corneal epithelial cells activates ataxia telangiectasia mutated (ATM), an apical kinase in the host DNA damage response pathway, whose activity is necessary for the progression of lytic HSV-1 infection. The purpose of this study is to investigate the mechanism of ATM activation by HSV-1 in the corneal epithelium, as well as its functional significance.
Methods
Mechanistic studies were performed in cultured human corneal epithelial cell lines (hTCEpi, HCE), as well as in esophageal (EPC2) and oral (OKF6) cell lines. Transfection-based experiments were performed in HEK293 cells. HSV-1 infection was carried out using the wild-type KOS strain, various mutant strains (
ts
B7, d120, 7134, i13, n208), and bacterial artificial chromosomes (fHSVΔ
pac
, pM24). Inhibitors of ATM (KU-55933), protein synthesis (cycloheximide), and viral DNA replication (phosphonoacetic acid) were used. Outcomes of infection were assayed using Western blotting, qRT-PCR, immunofluorescence, and comet assay.
Results
This study demonstrates that HSV-1-mediated ATM activation in corneal epithelial cells relies on the viral immediate early gene product ICP4 and requires the presence of the viral genome in the host nucleus. We show that ATM activation is independent of viral genome replication, the ICP0 protein, and the presence of DNA lesions. Interestingly, ATM activity appears to be necessary at the onset of infection, but dispensable at the later stages.
Conclusions
This study expands our understanding of HSV-1 virus-host interactions in the corneal epithelium and identifies potential areas of future investigation and therapeutic intervention in herpes keratitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.