Findings showed specific structural brain abnormalities to be associated with visuospatial memory and problem-solving ability-related impairments observed in AUD. Higher RD in 6 WM regions suggests demyelination, and lower AD in left external capsule suggests axonal loss in AUD. The positive correlation between FA and age in bilateral putamen may reflect accumulation of iron depositions with increasing age.
In amblyopia, abnormal visual experience during development leads to an enduring loss of visual acuity in adulthood. Physiological studies in animal models suggest that intracortical GABAergic inhibition may mediate visual deficits in amblyopia. To better understand the relationship between visual cortical γ-aminobutyric acid (GABA) and perceptual suppression in persons with amblyopia (PWA), we employed magnetic resonance spectroscopy (MRS) to quantify GABA levels in both PWA and normally-sighted persons (NSP). In the same individuals, we obtained psychophysical measures of perceptual suppression for a variety of ocular configurations. In PWA, we found a robust negative correlation between the depth of amblyopia (the difference in visual acuity between the amblyopic and non-amblyopic eyes) and GABA concentration that was specific to visual cortex and was not observed in a sensorimotor cortical control region. Moreover, lower levels of visual cortical GABA were associated with weaker perceptual suppression of the fellow eye by the amblyopic eye and stronger suppression of the amblyopic eye by the fellow eye. Taken together, our findings provide evidence that intracortical GABAergic inhibition is an important component of the pathology of human amblyopia and suggest possible therapeutic interventions to restore vision in the amblyopic eye through enhancement of visual cortical GABAergic signaling in PWA.
Perceptual learning (PL), often characterized by improvements in perceptual performance with training that are specific to the stimulus conditions used during training, exemplifies experience-dependent cortical plasticity. An improved understanding of how neuromodulatory systems shape PL promises to provide new insights into the mechanisms of plasticity, and by extension how PL can be generated and applied most efficiently. Previous studies have reported enhanced PL in human subjects following administration of drugs that increase signaling through acetylcholine (ACh) receptors, and physiological evidence indicates that ACh sharpens neuronal selectivity, suggesting that this neuromodulator supports PL and its stimulus specificity. Here we explored the effects of enhancing endogenous cholinergic signaling during PL of a visual texture discrimination task. We found that training on this task in the lower visual field yielded significant behavioral improvement at the trained location. However, a single dose of the cholinesterase inhibitor donepezil, administered before training, did not significantly impact either the magnitude or the location specificity of texture discrimination learning compared with placebo. We discuss potential explanations for discrepant findings in the literature regarding the role of ACh in visual PL, including possible differences in plasticity mechanisms in the dorsal and ventral cortical processing streams.
Inhibitory impairments may persist after abstinence in individuals with alcohol use disorder (AUD). Using traditional statistical parametric mapping (SPM) fMRI analysis, which requires data to satisfy parametric assumptions often difficult to satisfy in biophysical system as brain. Studies have reported equivocal findings on brain areas responsible for response inhibition, and activation abnormalities during inhibition found in AUD persist after abstinence. Research is warranted using newer analysis approaches. fMRI scans were acquired during a Go/NoGo task from 30 abstinent male AUD and 30 healthy control participants with the objectives being (1) to characterize neuronal substrates associated with response inhibition using a rigorous nonparametric permutation-based fMRI analysis and (2) to determine whether these regions were differentially activated between abstinent AUD and control participants. A blood oxygen level dependent contrast analysis showed significant activation in several right cortical regions and deactivation in some left cortical regions during successful inhibition. The largest source of variance in activation level was due to group differences. The findings provide evidence of cortical substrates employed during response inhibition. The largest variance was explained by lower activation in inhibition as well as ventral attentional cortical networks in abstinent individuals with AUD, which were not found to be associated with length of abstinence, age, or impulsiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.