Intrinsic population growth rate (r(max)) is an important parameter for many ecological applications, such as population risk assessment and harvest management. However, r(max) can be a difficult parameter to estimate, particularly for long-lived species, for which appropriate life table data or abundance time series are typically not obtainable. We describe a method for improving estimates of r(max) for long-lived species by integrating life-history theory (allometric models) and population-specific demographic data (life table models). Broad allometric relationships, such as those between life history traits and body size, have long been recognized by ecologists. These relationships are useful for deriving theoretical expectations for r(max), but r(max) for real populations may vary from simple allometric estimators for "archetypical" species of a given taxa or body mass. Meanwhile, life table approaches can provide population-specific estimates of r(max) from empirical data, but these may have poor precision from imprecise and missing vital rate parameter estimates. Our method borrows strength from both approaches to provide estimates that are consistent with both life-history theory and population-specific empirical data, and are likely to be more robust than estimates provided by either method alone. Our method uses an' allometric constant: the product of r(max) and the associated generation time for a stable-age population growing at this rate. We conducted a meta-analysis to estimate the mean and variance of this allometric constant across well-studied populations from three vertebrate taxa (birds, mammals, and elasmobranchs) and found that the mean was approximately 1.0 for each taxon. We used these as informative Bayesian priors that determine how much to "shrink" imprecise vital rate estimates for a data-limited population toward the allometric expectation. The approach ultimately provides estimates of r(max) (and other vital rates) that reflect a balance of information from the individual studied population, theoretical expectation, and meta-analysis of other populations. We applied the method specifically to an archetypical petrel (representing the genus Procellaria) and to white sharks (Carcharodon carcharias) in the context of estimating sustainable-fishery bycatch limits.
SUMMARYTo address growing concern over the effects of fisheries non-target catch on elasmobranchs worldwide, the accurate reporting of elasmobranch catch is essential. This requires data on a combination of measures, including reported landings, retained and discarded non-target catch, and post-discard survival. Identification of the factors influencing discard versus retention is needed to improve catch estimates and to determine wasteful fishing practices. To do this, retention rates of elasmobranch non-target catch in a broad subset of fisheries throughout the world were compared by taxon, fishing country, and gear. A regression tree and random forest analysis indicated that taxon was the most important determinant of retention in this dataset, but all three factors together explained 59% of the variance. Estimates of total elasmobranch removals were calculated by dividing the Food and Agriculture Organization of the United Nations (FAO) global elasmobranch landings by average retention rates, and suggest that total elasmobranch removals may exceed FAO reported landings by as much as 400%. This analysis is the first effort to directly characterize global drivers of discards for elasmobranch non-target catch. The results highlight the importance of accurate quantification of retention and discard rates to improve assessments of the potential impacts of fisheries on these species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.