The COVID-19 pandemic continues to spread throughout the world with an urgent need for a safe and protective vaccine to effectuate herd protection and control the spread of SARS-CoV-2. Here, we report the development of a SARS-CoV-2 subunit vaccine (NVX-CoV2373) from the full-length spike (S) protein that is stable in the prefusion conformation. NVX-CoV2373 S form 27.2-nm nanoparticles that are thermostable and bind with high affinity to the human angiotensin-converting enzyme 2 (hACE2) receptor. In mice, low-dose NVX-CoV2373 with saponin-based Matrix-M adjuvant elicit high titer anti-S IgG that blocks hACE2 receptor binding, neutralize virus, and protects against SARS-CoV-2 challenge with no evidence of vaccine-associated enhanced respiratory disease. NVX-CoV2373 also elicits multifunctional CD4+ and CD8+ T cells, CD4+ follicular helper T cells (Tfh), and antigen-specific germinal center (GC) B cells in the spleen. In baboons, low-dose levels of NVX-CoV2373 with Matrix-M was also highly immunogenic and elicited high titer anti-S antibodies and functional antibodies that block S-protein binding to hACE2 and neutralize virus infection and antigen-specific T cells. These results support the ongoing phase 1/2 clinical evaluation of the safety and immunogenicity of NVX-CoV2373 with Matrix-M (NCT04368988).
The COVID-19 pandemic continues to spread throughout the world with an urgent need for a safe and protective vaccine to effectuate herd immunity to control the spread of SARS-CoV-2. Here, we report the development of a SARS-CoV-2 subunit vaccine (NVX-CoV2373) produced from the full-length spike (S) protein, stabilized in the prefusion conformation. Purified NVX-CoV2373 S form 27.2 nm nanoparticles that are thermostable and bind with high affinity to the human angiotensin-converting enzyme 2 (hACE2) receptor. In mice and baboons, low-dose NVX-CoV2373 with saponin-based Matrix-M adjuvant elicits high titer anti-S IgG that is associated with blockade of hACE2 receptor binding, virus neutralization, and protection against SARS-CoV-2 challenge in mice with no evidence of vaccine-associated enhanced respiratory disease (VAERD). NVX-CoV2373 vaccine also elicits multifunctional CD4+ and CD8+ T cells, CD4+ T follicular helper T cells (Tfh), and the generation of antigen-specific germinal center (GC) B cells in the spleen. These results support the ongoing phase 1/2 clinical evaluation of the safety and immunogenicity of NVX-CoV2327 with Matrix-M (NCT04368988).
Infection of rabbits with Treponema pallidum induces nonspecific acquired cellular resistance (ACR) to Listeria monocytogenes. This resistance can be adoptively transferred using thymus-dependent lymphocytes. Since infections that induce ACR are usually brought under control by cellular mechanisms, we sought to determine whether induction of ACR in rabbits stimulates resistance to challenge with T. pallidum. When BCG-infected rabbits which suppressed the growth of Listeria were challenged intravenously with T. pallidum, lesions appeared at the same time and progressed in a fashion similar to that in non-BCG-infected controls. There was a tendency for syphilitic lesions to disseminate more widely in BCG-infected animals and for the lesions to necrose more rapidly in controls. T. pallidum may resist phagocytosis by macrophages, as has been suggested previously, or macrophages may fail to be activated locally in the dermis. Although syphilitic infeciton appears to stimulate ACR, activation of the macrophages may not contribute significantly to the ability of the host to suppress T. pallidum.
Human respiratory syncytial virus (RSV) is a cause of lower respiratory tract infection in infants, young children, and older adults. There is no licensed vaccine and prophylactic treatment options are limited. The RSV fusion (F) glycoprotein is a target of host immunity and thus a focus for vaccine development. F-trimers are metastable and undergo significant rearrangements from the prefusion to a stable postfusion structure with neutralizing epitopes on intermediate structures. We hypothesize that vaccine strategies that recapitulate the breathable F quaternary structure, and provide accessibility of B-cells to epitopes on intermediate conformations, may collectively contribute to protective immunity, while rigid prefusion F structures restrict access to key protective epitopes. To test this hypothesis, we used the near full-length prefusogenic F as a backbone to construct three prefusion F variants with substitutions in the hydrophobic head cavity: (1) disulfide bond mutant (DS), (2) space filling hydrophobic amino acid substitutions (Cav1), and (3) DS, Cav1 double mutant (DS-Cav1). In this study, we compared the immunogenicity of prefusogenic F to prefusion F variants in two animal models. Native prefusogenic F was significantly more immunogenic, producing high titer antibodies to prefusogenic, prefusion, and postfusion F structures, while animals immunized with DS or DS-Cav1 produced antibodies to prefusion F. Importantly, prefusogenic F elicited antibodies that target neutralizing epitopes including prefusion-specific site zero (Ø) and V and conformation-independent neutralizing sites II and IV. Immunization with DS or DS-Cav1 elicited antibodies primarily to prefusion-specific sites Ø and V with little or no antibodies to other key neutralizing sites. Animals immunized with prefusogenic F also had significantly higher levels of antibodies that cross-neutralized RSV A and B subtypes, while immunization with DS or DS-Cav1 produced antibodies primarily to the A subtype. We conclude that breathable trimeric vaccines that closely mimic the native F-structure, and incorporate strategies for B-cell accessibility to protective epitopes, are important considerations for vaccine design. F structures locked in a single conformation restrict access to neutralizing epitopes that may collectively contribute to destabilizing F-trimers important for broad protection. These results also have implications for vaccine strategies targeting other type 1 integral membrane proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.