BackgroundChlamydiae are obligate intracellular bacteria that multiply in a vacuolar compartment, the inclusion. Several chlamydial proteins containing a bilobal hydrophobic domain are translocated by a type III secretion (TTS) mechanism into the inclusion membrane. They form the family of Inc proteins, which is specific to this phylum. Based on their localization, Inc proteins likely play important roles in the interactions between the microbe and the host. In this paper we sought to identify and analyze, using bioinformatics tools, all putative Inc proteins in published chlamydial genomes, including an environmental species.ResultsInc proteins contain at least one bilobal hydrophobic domain made of two transmembrane helices separated by a loop of less than 30 amino acids. Using bioinformatics tools we identified 537 putative Inc proteins across seven chlamydial proteomes. The amino-terminal segment of the putative Inc proteins was recognized as a functional TTS signal in 90% of the C. trachomatis and C. pneumoniae sequences tested, validating the data obtained in silico. We identified a macro domain in several putative Inc proteins, and observed that Inc proteins are enriched in segments predicted to form coiled coils. A surprisingly large proportion of the putative Inc proteins are not constitutively translocated to the inclusion membrane in culture conditions.ConclusionsThe Inc proteins represent 7 to 10% of each proteome and show a great degree of sequence diversity between species. The abundance of segments with a high probability for coiled coil conformation in Inc proteins support the hypothesis that they interact with host proteins. While the large majority of Inc proteins possess a functional TTS signal, less than half may be constitutively translocated to the inclusion surface in some species. This suggests the novel finding that translocation of Inc proteins may be regulated by as-yet undetermined mechanisms.
BackgroundThe periplasmic High Temperature Requirement protein A (HtrA) plays important roles in bacterial protein folding and stress responses. However, the role of chlamydial HtrA (cHtrA) in chlamydial pathogenesis is not clear.ResultsThe cHtrA was detected both inside and outside the chlamydial inclusions. The detection was specific since both polyclonal and monoclonal anti-cHtrA antibodies revealed similar intracellular labeling patterns that were only removed by absorption with cHtrA but not control fusion proteins. In a Western blot assay, the anti-cHtrA antibodies detected the endogenous cHtrA in Chlamydia-infected cells without cross-reacting with any other chlamydial or host cell antigens. Fractionation of the infected cells revealed cHtrA in the host cell cytosol fraction. The periplasmic cHtrA protein appeared to be actively secreted into host cell cytosol since no other chlamydial periplasmic proteins were detected in the host cell cytoplasm. Most chlamydial species secreted cHtrA into host cell cytosol and the secretion was not inhibitable by a type III secretion inhibitor.ConclusionSince it is hypothesized that chlamydial organisms possess a proteolysis strategy to manipulate host cell signaling pathways, secretion of the serine protease cHtrA into host cell cytosol suggests that the periplasmic cHtrA may also play an important role in chlamydial interactions with host cells.
The chlamydial protease/proteasome-like activity factor (CPAF) is secreted into the host cytosol to degrade various host factors that benefit chlamydial intracellular survival. Although the full-length CPAF is predicted to contain a putative signal peptide at its N terminus, the secretion pathway of CPAF is still unknown. Here, we have provided experimental evidence that the N-terminal sequence covering the M1–G31 region was cleaved from CPAF during chlamydial infection. The CPAF N-terminal sequence, when expressed in a phoA gene fusion construct, was able to direct the export of the mature PhoA protein across the inner membrane of wild-type Escherichia coli. However, E. coli mutants deficient in SecB failed to support the CPAF signal-peptide-directed secretion of PhoA. Since native PhoA secretion was known to be independent of SecB, this SecB dependence must be rendered by the CPAF leader peptide. Furthermore, lack of SecY function also blocked the CPAF signal-peptide-directed secretion of PhoA. Most importantly, CPAF secretion into the host cell cytosol during chlamydial infection was selectively inhibited by an inhibitor specifically targeting type I signal peptidase but not by a type III secretion-system-specific inhibitor. Together, these observations have demonstrated that the chlamydial virulence factor CPAF relies on Sec-dependent transport for crossing the chlamydial inner membrane, which has provided essential information for further delineating the pathways of CPAF action and understanding chlamydial pathogenic mechanisms.
The Chlamydia-secreted protease/proteasome-like activity factor (CPAF) is synthesized as a proenzyme (proCPAF) and requires processing for proteolytic activity. Recent structural studies have further demonstrated that CPAF is a serine protease that can undergo autoprocessing and self-activation in a concentration-dependent manner in vitro. However, it is not known how CPAF is processed and activated during chlamydial infection. In the current study, we used a mutant CPAF designated as CPAF(E558A) that is deficient in processing by itself as a substrate to search for putative CPAF activation factor(s) in Chlamydia-infected cells. CPAF(E558A) was processed by the lysates made from Chlamydia-infected cells and the processing activity correlated with the presence of endogenous active CPAF in the fractionated lysate samples. CPAF produced in the Chlamydia-infected cells is required for processing the mutant CPAF(E558A) since the processing activity was removed by depletion with anti-CPAF but not control antibodies. Furthermore, a purified and activated wild type CPAF alone was sufficient for processing CPAF(E558A) and no other chlamydial proteases are required. Finally, fusion tag-induced oligomerization can lead to autoprocessing and self-activation of the wild type CPAF in mammalian cells. These observations together have demonstrated that CPAF undergoes autoprocessing and self-activation during chlamydial infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.