Canine malignant melanoma, a significant cause of mortality in domestic dogs, is a powerful comparative model for human melanoma, but little is known about its genetic etiology. We mapped the genomic landscape of canine melanoma through multi-platform analysis of 37 tumors (31 mucosal, 3 acral, 2 cutaneous, and 1 uveal) and 17 matching constitutional samples including long- and short-insert whole genome sequencing, RNA sequencing, array comparative genomic hybridization, single nucleotide polymorphism array, and targeted Sanger sequencing analyses. We identified novel predominantly truncating mutations in the putative tumor suppressor gene PTPRJ in 19% of cases. No BRAF mutations were detected, but activating RAS mutations (24% of cases) occurred in conserved hotspots in all cutaneous and acral and 13% of mucosal subtypes. MDM2 amplifications (24%) and TP53 mutations (19%) were mutually exclusive. Additional low-frequency recurrent alterations were observed amidst low point mutation rates, an absence of ultraviolet light mutational signatures, and an abundance of copy number and structural alterations. Mutations that modulate cell proliferation and cell cycle control were common and highlight therapeutic axes such as MEK and MDM2 inhibition. This mutational landscape resembles that seen in BRAF wild-type and sun-shielded human melanoma subtypes. Overall, these data inform biological comparisons between canine and human melanoma while suggesting actionable targets in both species.
Melanocytic lesions originating from the oral mucosa or cutaneous epithelium are common in the general dog population, with up to 100,000 diagnoses each year in the USA. Oral melanoma is the most frequent canine neoplasm of the oral cavity, exhibiting a highly aggressive course. Cutaneous melanocytomas occur frequently, but rarely develop into a malignant form. Despite the differential prognosis, it has been assumed that subtypes of melanocytic lesions represent the same disease. To address the relative paucity of information about their genomic status, molecular cytogenetic analysis was performed on the three recognized subtypes of canine melanocytic lesions. Using array comparative genomic hybridization (aCGH) analysis, highly aberrant distinct copy number status across the tumor genome for both of the malignant melanoma subtypes was revealed. The most frequent aberrations included gain of dog chromosome (CFA) 13 and 17 and loss of CFA 22. Melanocytomas possessed fewer genome wide aberrations, yet showed a recurrent gain of CFA 20q15.3–17. A distinctive copy number profile, evident only in oral melanomas, displayed a sigmoidal pattern of copy number loss followed immediately by a gain, around CFA 30q14. Moreover, when assessed by fluorescence in situ hybridization (FISH), copy number aberrations of targeted genes, such as gain of c-MYC (80 % of cases) and loss of CDKN2A (68 % of cases), were observed. This study suggests that in concordance with what is known for human melanomas, canine melanomas of the oral mucosa and cutaneous epithelium are discrete and initiated by different molecular pathways.
Background: Biliary tract cancers (BTCs) are a heterogeneous group of aggressive, rare malignancies with limited standard chemotherapeutic options for advanced disease. Recent studies have demonstrated potential novel biliary cancer targets and a possible role for immunotherapy in the treatment of patients with this disease. Intrahepatic cholangiocarcinoma (IHCC), extrahepatic cholangiocarcinoma (EHCC), and gallbladder carcinoma (GBC) are frequently grouped together in clinical trials despite differences in tumor biology. Methods: To further investigate tumor biology differences, we profiled 1,502 BTCs using next-generation sequencing (NGS), immunohistochemistry, in situ hybridization, and RNA sequencing. Results: IHCCs had higher rates of IDH1, BAP1, and PBRM1 mutations and FGFR2 fusions; EHCCs had higher rates of KRAS, CDKN2A, and BRCA1 mutations; and GBCs had higher rates of homologous recombination repair deficiency and Her2/neu overexpression and amplification. IHCCs and GBCs had higher rates of potential positive predictive biomarkers for immune checkpoint inhibition (PD-L1 expression, high microsatellite instability, and high tumor mutational burden) than EHCCs. Conclusions: These findings support clinical molecular profiling of BTCs to inform potential therapeutic selection and clinical trial design based on the primary tumor's site of origin within the biliary tree.
Purpose: GEP-NENs are rare malignancies with increasing incidence. Their molecular characteristics are still undefined. We explored the underlying biology of GEP-NENs and the differences between gastrointestinal (GI) and pancreatic (PNEN), high-grade (HG), and low-grade (LG) tumors. Experimental Design: GEP-NENs were analyzed using next-generation sequencing (NGS; MiSeq on 47 genes, NextSeq on 592 genes), IHC, and in situ hybridization. Tumor mutational burden (TMB) was calculated on the basis of somatic nonsynonymous missense mutations, and microsatellite instability (MSI) was evaluated by NGS of known MSI loci. Results: In total, 724 GEP-NENs were examined: GI (N = 469), PNEN (N = 255), HG (N = 135), and LG (N = 335). Forty-nine percent were female, and median age was 59. Among LG tumors, the most frequently mutated genes were ATRX (13%), ARID1A (10%), and MEN1 (10%). HG tumors showed TP53 (51%), KRAS (30%), APC (27%), and ARID1A (23%). Immune-related biomarkers yielded a lower prevalence in LG tumors compared with HG [MSI-H 0% vs. 4% (P = 0.04), PD-L1 overexpression 1% vs. 6% (P = 0.03), TMB-high 1% vs. 7% (P = 0.05)]. Compared with LG, HG NENs showed a higher mutation rate in BRAF (5.4% vs. 0%, P < 0.0001), KRAS (29.4% vs. 2.6%, P < 0.0001), and PI3KCA (7% vs. 0.3%, P < 0.0001). When compared with GI, PNEN carried higher frequency of MEN1 (25.9% vs. 0.0%, P < 0.0001), FOXO3 (8.6% vs. 0.8%, P = 0.005), ATRX (20.6% vs. 2.0%, P = 0.007), and TSC2 (6.3% vs. 0.0%, P = 0.007), but lower frequency of mutations in APC (1.0% vs. 13.8%, P < 0.0001). Conclusions: Significant molecular differences were observed in GEP-NENs by tumor location and grade, indicating differences in carcinogenic pathways and biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.