This paper presents a compact antenna based on two different metamaterial resonators, the E-shape resonators and the interdigital resonators suitable for biomedical implant applications. The proposed antennas operate in the industrial, scientific, and medical (ISM) bands in the frequency band of 2.4-2.5 GHz. The integration of metamaterial (MTM) in the design leading to the reduce size of these antennas and gaining enhancement. The overall size of the proposed antennas is 𝟖 × 𝟕 × 𝟏. 𝟐𝟕𝐦𝐦 𝟑 . The implantable antennas contain two layers of the substrate; the lower layer comprises the MTM resonators and the upper, superstrate layer. To order to observe the exposure of electromagnetic energy to human tissues, the specific absorption rates (SARs) of the proposed antennas are also calculated in the layer model. The antennas are designed and simulated by the two software simulators CST and HFSS.
Abstract-The waveguide filter structure is treated by two softwares (HFSS (High Frequency Structure Simulator) and CST (Computer Simulation Technology)). Numerical example is given in this article to demonstrate, step by step, the application of the approach to the design of resonator, direct coupled waveguide and microstrip filters based on electromagnetic (EM) simulations. For this design procedure, the filter structure is simulated by successively adding one resonator at a time. To continue the work illustrates how to design a fourth order coupled resonator based rectangular waveguide circuit in the traditional way. With a large number of variables, such tuning work consumes a lot of time and the convergence of the final result is not guaranteed. A fourth order X-band bandpass filter with a center frequency of 11 GHz and a fractional bandwidth FBW = 0,0273 is designed using this procedure and presented here as an example. The simulated results by CST are presented and compared withthe results simulated by a high-frequency structure simulator. Good agreement between the simulated HFSSand simulated results by CST is observed.
Abstract. In this article, we demonstrate a new inductive-window 5.245-GHz-band-pass filter based on post-wall irises by standard PcB process on Epoxy FR4 substrate. A new and easy to build microstrip-to-waveguide transition that consists of three tapers is also designed to connect the filter to standard measurement system. Both simulated results and measurements have shown insertion-loss lower than 5 dB within 14% bandwidth around 5.245 GHz and input return loss better than 25 dB over the frequency range.PACS. 41.20.-q Applied classical electromagnetism -41.20.Jb Electromagnetic wave propagation; radiowave propagation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.