Objective. To investigate whether the abnormal expression of matrix metalloproteinases (MMPs) 3, 9, and 13 and ADAMTS-4 by human osteoarthritic (OA) chondrocytes is associated with epigenetic "unsilencing."Methods. Cartilage was obtained from the femoral heads of 16 patients with OA and 10 control patients with femoral neck fracture. Chondrocytes with abnormal enzyme expression were immunolocalized. DNA was extracted, and the methylation status of the promoter regions of MMPs 3, 9, and 13 and ADAMTS-4 was analyzed with methylation-sensitive restriction enzymes, followed by polymerase chain reaction amplification.Results. Very few chondrocytes from control cartilage expressed the degrading enzymes, whereas all clonal chondrocytes from late-stage OA cartilage were immunopositive. The overall percentage of nonmethylated sites was increased in OA patients (48.6%) compared with controls (20.1%): 20% versus 4% for MMP-13, 81% versus 47% for MMP-9, 57% versus 30% for MMP-3, and 48% versus 0% for ADAMTS-4. Not all CpG sites were equally susceptible to loss of methylation. Some sites were uniformly methylated, whereas in others, methylation was generally absent. For each enzyme, there was 1 specific CpG site where the demethylation in OA patients was significantly higher than that in controls: at -110 for MMP-13, -36 for MMP-9, -635 for MMP-3, and -753 for ADAMTS-4.Conclusion. This study provides the first evidence that altered synthesis of cartilage-degrading enzymes by late-stage OA chondrocytes may have resulted from epigenetic changes in the methylation status of CpG sites in the promoter regions of these enzymes. These changes, which are clonally transmitted to daughter cells, may contribute to the development of OA.Osteoarthritis (OA) is characterized by the progressive failure of the extracellular cartilage matrix, which leads to the destruction of articular cartilage (1,2). Primary OA is a late-onset complex disease with genetic, mechanical, and environmental components. Concordance of the disease in monozygotic twins is 40-60%, and the overall contribution of genetic factors is estimated to be ϳ50% (3). Given that more than 60% of unrelated adults over the age of 60 years are affected, other factors must also play a role in the development of this disease. Age, obesity, abnormal joint loading, and sports injuries are all risk factors, but OA is more than just the result of "wear and tear" (4,5). Articular chondrocytes are increasingly being suspected of playing major roles in the initiation and progression of the disease (1). This warrants closer examination of the cellular changes that occur in OA.The main extracellular matrix components of articular cartilage are collagens (principally, types II, IX, and XI) and proteoglycans (mainly, aggrecan). The major enzymes that mediate the destructive processes are aggrecanases 1 and 2 (ADAMTS-4 and ADAMTS-5) and matrix metalloproteinases (MMPs) 2 (gelatinase A),
The two major aggrecanases involved in osteoarthritis (OA) are ADAMTS-4 and ADAMTS-5. Knock-out studies suggested that ADAMTS-5, but not ADAMTS-4, is the major aggrecanase in murine OA. However, studies of human articular cartilage suggest that ADAMTS-4 also contributes to aggrecan degradation in human OA. This study investigated ADAMTS-4 in human OA. While ADAMTS-4 was virtually absent in control cartilage, numerous ADAMTS-4 immuno-positive chondrocytes were present in OA cartilage and their numbers increased with disease severity. RT-PCR confirmed expression, especially in the surface zone. DNA methylation was lost at specific CpG sites in the ADAMTS-4 promoter in OA chondrocytes, suggesting that the increased gene expression was more than a simple up-regulation, but involved loss of DNA methylation at specific CpG sites, resulting in a heritable and permanent expression of ADAMTS-4 in OA chondrocytes. These results suggest that ADAMTS-4 is epigenetically regulated and plays a role in aggrecan degradation in human OA.
MicroRNAs (miRs) play a pivotal role in a variety of biological processes including stem cell differentiation and function. Human foetal femur derived skeletal stem cells (SSCs) display enhanced proliferation and multipotential capacity indicating excellent potential as candidates for tissue engineering applications. This study has examined the expression and role of miRs in human foetal femur derived SSC differentiation along chondrogenic and osteogenic lineages. Cells isolated from the epiphyseal region of the foetal femur expressed higher levels of genes associated with chondrogenesis while cells from the foetal femur diaphyseal region expressed higher levels of genes associated with osteogenic differentiation. In addition to the difference in osteogenic and chondrogenic gene expression, epiphyseal and diaphyseal cells displayed distinct miRs expression profiles. miR-146a was found to be expressed by human foetal femur diaphyseal cells at a significantly enhanced level compared to epiphyseal populations and was predicted to target various components of the TGF-β pathway. Examination of miR-146a function in foetal femur cells confirmed regulation of protein translation of SMAD2 and SMAD3, important TGF-β and activin ligands signal transducers following transient overexpression in epiphyseal cells. The down-regulation of SMAD2 and SMAD3 following overexpression of miR-146a resulted in an up-regulation of the osteogenesis related gene RUNX2 and down-regulation of the chondrogenesis related gene SOX9. The current findings indicate miR-146a plays an important role in skeletogenesis through attenuation of SMAD2 and SMAD3 function and provide further insight into the role of miRs in human skeletal stem cell differentiation modulation with implications therein for bone reparation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.