ADInternational audienceMultiobjective optimization has a significant number of real-life applications. For this reason, in this paper we consider the problem of finding Pareto critical points for unconstrained multiobjective problems and present a trust-region method to solve it. Under certain assumptions, which are derived in a very natural way from assumptions used to establish convergence results of the scalar trust-region method, we prove that our trust-region method generates a sequence which converges in the Pareto critical way. This means that our generalized marginal function, which generalizes the norm of the gradient for the multiobjective case, converges to zero. In the last section of this paper, we give an application to satisficing processes in Behavioral Sciences. Multiobjective trust-region methods appear to be remarkable specimens of much more abstract satisficing processes, based on “variational rationality” concepts. One of their important merits is to allow for efficient computations. This is a striking result in Behavioral Sciences
In this paper we propose a linear scalarization proximal point algorithm for solving arbitrary lower semicontinuous quasiconvex multiobjective minimization problems. Under some natural assumptions and using the condition that the proximal parameters are bounded we prove the convergence of the sequence generated by the algorithm and when the objective functions are continuous, we prove the convergence to a generalized critical point. Furthermore, if each iteration minimize the proximal regularized function and the proximal parameters converges to zero we prove the convergence to a weak Pareto solution. In the continuously differentiable case, it is proved the global convergence of the sequence to a Pareto critical point and we introduce an inexact algorithm with the same convergence properties. We also analyze particular cases of the algorithm obtained finite convergence to a Pareto optimal point when the objective functions are convex and a sharp minimum condition is satisfied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.