In this work, the properties of alkali silicate geopolymer type materials and diatomite as additive to fly coal ash was investigated using thermic coal plant’s fly ash in alkaline solution. The reacted products of alumino-silicate geopolymers using fly ash plus diatomite were pseudo-amorphous aluminosilicate gel and calcite and their mechanical and thermal properties were evaluated by the addition of diatomite. The compressive strength of this geopolymer is similar to that of the Portland cement mortar of PC20 (± 20 %) when cured for 28 days while the density and thermal properties are much lower that indicates the insulator properties. Alkaline solution was produced by NaOH in different concentrations to determine the least alkaline solution molarity in the range of 1 M, 3 M and 5 M. The characterization of geopolymers were done by using XRD for phase analysis, SEM for surface and morphological evaluation, compression tests for mechanical properties and transient plane source thermal analysis for thermal insulation properties. The results showed that, 1 M of NaOH alkaline solution and 10wt% diatomite addition can provide enough strength of 18 MPa which is a good candidate for constructional materials. The thermal conductivity coefficient of 10 wt.% diatomite added geopolymer was evaluated as 0.0018 W/m×K which can also be a good candidate for insulator materials to be used in green lateral wall production.
Chalcopyrite (CuFeS 2 ) is commonly used ore in production of copper, but leaching of this ore is very slow and inefficient due to "passivation" during leaching at atmospheric conditions. In this study, in order to overcome drawbacks of the passivation layers, the concentrate supplied from Eti Bakır A.Ş. Küre Plant in Turkey was roasted at 600 °C for 1 h and after leached. Box-Wilson procedure of statistical experimental design was utilized to identify the effects of significant leaching variables for instance leaching time (X 1 ; 10-120 min), solid/liquid ratio (X 2 ; 0.01-0.20), and H 2 SO 4 concentration (X 3 ; 0.01-1.00 M) on Cu extraction (%) from roasted concentrate and was tried to be optimized. The coefficients of response functions have been calculated by regression analysis, and the estimates have been found to be well in line with the experimental outcomes. The optimal leaching parameters, time, solid/liquid rate and H 2 SO 4 concentration were determined as 115 min, 0.116, and 0.71 M, respectively, and the highest Cu extraction (%) value was calculated as 92.45%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.