Full details of the project: https://cityjson.orgThe international standard CityGML is both a data model and an exchange format to store digital 3D models of cities. While the data model is used by several cities, companies, and governments, in this paper we argue that its XML-based exchange format has several drawbacks. These drawbacks mean that it is difficult for developers to implement parsers for CityGML, and that practitioners have, as a consequence, to convert their data to other formats if they want to exchange them with others. We present CityJSON, a new JSON-based exchange format for the CityGML data model (version 2.0.0). CityJSON was designed with programmers in mind, so that software and APIs supporting it can be quickly built. It was also designed to be compact (a compression factor of around six with real-world datasets), and to be friendly for web and mobile development. We argue that it is considerably easier to use than the CityGML format, both for reading and for creating datasets. We discuss in this paper the main features of CityJSON, briefly present the different software packages to parse/view/edit/create files (including one to automatically convert between the JSON and GML encodings), analyse how real-world datasets compare to those of CityGML, and we also introduce Extensions, which allow us to extend the core data model in a documented manner.
Abstract:It is widely acknowledged that the integration of BIM and GIS data is a crucial step forward for future 3D city modelling, but most of the research conducted so far has covered only the high-level and semantic aspects of GIS-BIM integration. This paper presents the results of the GeoBIM project, which tackled three integration problems focussing instead on aspects involving geometry processing: (i) the automated processing of complex architectural IFC models; (ii) the integration of existing GIS subsoil data in BIM; and (iii) the georeferencing of BIM models for their use in GIS software. All the problems have been studied using real world models and existing datasets made and used by practitioners in The Netherlands. For each problem, this paper exposes in detail the issues faced, proposed solutions, and recommendations for a more successful integration.
The remote estimation of a region’s population has for decades been a key application of geographic information science in demography. Most studies have used 2D data (maps, satellite imagery) to estimate population avoiding field surveys and questionnaires. As the availability of semantic 3D city models is constantly increasing, we investigate to what extent they can be used for the same purpose. Based on the assumption that housing space is a proxy for the number of its residents, we use two methods to estimate the population with 3D city models in two directions: (1) disaggregation (areal interpolation) to estimate the population of small administrative entities (e.g. neighbourhoods) from that of larger ones (e.g. municipalities); and (2) a statistical modelling approach to estimate the population of large entities from a sample composed of their smaller ones (e.g. one acquired by a government register). Starting from a complete Dutch census dataset at the neighbourhood level and a 3D model of all 9.9 million buildings in the Netherlands, we compare the population estimates obtained by both methods with the actual population as reported in the census, and use it to evaluate the quality that can be achieved by estimations at different administrative levels. We also analyse how the volume-based estimation enabled by 3D city models fares in comparison to 2D methods using building footprints and floor areas, as well as how it is affected by different levels of semantic detail in a 3D city model. We conclude that 3D city models are useful for estimations of large areas (e.g. for a country), and that the 3D approach has clear advantages over the 2D approach.
The international standard CityGML defines five levels of detail (LODs) for 3D city models, but only the highest of these (LOD4) supports modelling the indoor geometry of a building, which must be acquired in correspondingly high detail and therefore at a high cost. Whereas simple 3D city models of the exterior of buildings (e.g. CityGML LOD2) can be generated largely automatically, and are thus now widely available and have a great variety of applications, similarly simple models containing their indoor geometries are rare.In this paper we present two contributions: (i) the definition of a level of detail LOD2+, which extends the CityGML LOD2 specification with indoor building geometries of comparable complexity to their exterior geometries in LOD2; and more importantly (ii) a method for automatically generating such indoor geometries based on existing CityGML LOD2 exterior geometries. We validate our method by generating LOD2+ models for a subset of the Rotterdam 3D data set and visually comparing these models to their real counterparts in building blueprints and imagery from Google Street View and Bing Maps. Furthermore, we use the LOD2+ models to compute the net internal area of each dwelling and validate our results by comparing these values to the ones registered in official government data sets.
LandInfra is a relatively new open standard for modelling and representing land and infrastructure features. As it overlaps with other open standards in BIM (IFC) and 3D GIS (CityGML), it has been recognised as a potential candidate to bridge the gap between the two domains. However, the knowledge of this standard in both communities is low, and there are still no publications which fully explore LandInfra and its possibilities for integrated BIM-GIS applications. In this paper, we review the LandInfra conceptual model and its GML encoding InfraGML, provide a detailed comparison of it with respect to CityGML and IFC, and investigate a few potential use cases where LandInfra and InfraGML are useful for BIM-GIS applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.