Full details of the project: https://cityjson.orgThe international standard CityGML is both a data model and an exchange format to store digital 3D models of cities. While the data model is used by several cities, companies, and governments, in this paper we argue that its XML-based exchange format has several drawbacks. These drawbacks mean that it is difficult for developers to implement parsers for CityGML, and that practitioners have, as a consequence, to convert their data to other formats if they want to exchange them with others. We present CityJSON, a new JSON-based exchange format for the CityGML data model (version 2.0.0). CityJSON was designed with programmers in mind, so that software and APIs supporting it can be quickly built. It was also designed to be compact (a compression factor of around six with real-world datasets), and to be friendly for web and mobile development. We argue that it is considerably easier to use than the CityGML format, both for reading and for creating datasets. We discuss in this paper the main features of CityJSON, briefly present the different software packages to parse/view/edit/create files (including one to automatically convert between the JSON and GML encodings), analyse how real-world datasets compare to those of CityGML, and we also introduce Extensions, which allow us to extend the core data model in a documented manner.
The Application Domain Extension (ADE) is a built-in mechanism of CityGML to augment its data model with additional concepts required by particular use cases. The goal of this paper is to provide an overview of the ADE mechanism and a literature review of developments since its introduction a decade ago. The discovery of publications found that currently there are 44 ADEs supporting a wide range of applications, but also application-agnostic purposes such as harmonisation with national geographic information standards. We hope this paper to double as a reference material for the developers of new ADEs.
LandInfra is a relatively new open standard for modelling and representing land and infrastructure features. As it overlaps with other open standards in BIM (IFC) and 3D GIS (CityGML), it has been recognised as a potential candidate to bridge the gap between the two domains. However, the knowledge of this standard in both communities is low, and there are still no publications which fully explore LandInfra and its possibilities for integrated BIM-GIS applications. In this paper, we review the LandInfra conceptual model and its GML encoding InfraGML, provide a detailed comparison of it with respect to CityGML and IFC, and investigate a few potential use cases where LandInfra and InfraGML are useful for BIM-GIS applications.
Noise is one of the main problems in urban areas. To monitor and manage noise problems, governmental organisations at all levels are obliged to regularly carry out noise studies. The simulation of noise is an important part of these studies. Currently, different organisations collect their own 3D input data as required in noise simulation in a semi-automated way, even if areas overlap. This is not efficient, but also differences in input data may lead to differences in the results of noise simulation which has a negative impact on the reliability of noise studies. To address this problem, this paper presents a methodology to automatically generate 3D input data as required in noise simulations (i.e. buildings, terrain, land coverage, bridges and noise barriers) from current 2D topographic data and point clouds. The generated data can directly be used in existing noise simulation software. A test with the generated data shows that the results of noise simulation obtained from our generated data are comparable to results obtained in a current noise study from practice. Automatically generated input data for noise simulation, as achieved in this paper, can be considered as a major step in noise studies. It does not only significantly improve the efficiency of noise studies, thus reducing their costs, but also assures consistency between different studies and therefore it improves the reliability and reproducibility. In addition, the availability of countrywide, standardised input data can help to advance noise simulation methods since the calculation method can be adopted to improved ways of 3D data acquisition and reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.