Folate-sensitive fragile sites are associated with the expansion and hypermethylation of CCG-repeats. The fragile site in 11q23.3, FRA11B, has been shown to cause chromosome deletions in vivo, its expression being associated with Jacobsen (11q-) syndrome. However, the majority of Jacobsen deletions are distal to FRA11B and are not related to its expression. To test the hypothesis that other unidentified fragile sites might be located in 11q23.3-24 and may cause these deletions, we have identified and characterised CCG-trinucleotide repeats within a 40 Mb YAC contig spanning distal chromosome 11q. Only eight CCG-repeats were identified within the entire YAC contig (not including FRA11B ), six of which map to the region of 11q23.3-24 that includes Jacobsen deletions. We have previously collated the deletion mapping data of 24 Jacobsen patients with the physical map of chromosome 11q, and accurately localised six breakpoints to short intervals corresponding to individual YAC clones. We now show that in each of these cases, YAC clones found to contain a deletion breakpoint also contain a CCG-repeat. The improved analysis of one of these deletions, together with those of several new Jacobsen cases, further strengthens this association by localising five breakpoints to individual PAC clones containing CCG-repeats. These data provide strong evidence for the non-random clustering of chromosome deletion breakpoints with CCG-repeats, and suggests that they may play an important role in a common mechanism of chromosome breakage.
G protein-coupled receptors (GPCRs) play an essential role in the regulation of cardiovascular function. Therapeutic modulation of GPCRs has proven to be beneficial in the treatment of human heart disease. Myocardial “orphan” GPCRs, for which the natural ligand is unknown, represent potential novel therapeutic targets for the treatment of heart disease. Here, we describe the expression pattern, signaling pathways, and possible physiological role of the orphan GPR22. GPR22 mRNA analysis revealed a highly restricted expression pattern, with remarkably abundant and selective expression in the brain and heart of humans and rodents. In the heart, GPR22 mRNA was determined to be expressed in all chambers and was comparable with transcript levels of the β1-adrenergic receptor as assessed by Taqman PCR. GPR22 protein expression in cardiac myocytes and coronary arteries was demonstrated in the rat heart by immunohistochemistry. When transfected into HEK-293 cells, GPR22 coupled constitutively to Gi/Go, resulting in the inhibition of adenyl cyclase. No constitutive coupling to Gs or Gq was observed. Myocardial mRNA expression of GPR22 was dramatically reduced following aortic banding in mice, suggesting a possible role in response to the stress associated with increased afterload. The absence of detectable GPR22 mRNA expression in the hearts of GPR22−/− mice had no apparent effect on normal heart structure or function; however, these mice displayed increased susceptibility to functional decompensation following aortic banding. Thus, we described, for the first time, the expression pattern and signaling for GPR22 and identified a protective role for GPR22 in response to hemodynamic stress resulting from increased afterload.
Titanium dioxide coatings were prepared from titanium isopropoxide solution containing nano TiO 2 particles by use of a plasma-spray process. The effects of stand-off distance on coating composition and microstructure were investigated and compared with those for pure solution precursor and a water-based suspension of TiO 2 . The results showed that the anatase content of the coating increased with increasing stand-off distance and the rate of deposition decreased with increasing spray distance. Anatase nanoparticles in solution were incorporated into the coatings without phase transformation whereas most of the TiO 2 in the precursor solution was transformed into rutile. The microstructure of preserved anatase particles bound by rutile improved the efficiency of deposition of the coating. The amount of anatase phase can be adjusted by variation of the ratio of solution to added anatase TiO 2 nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.