Results from large-eddy simulations and complementary flume experiments of turbulent open channel flows over bed-mounted square bars at intermediate submergence are presented. Scenarios with two bar spacings, corresponding to transitional and k-type roughness, and three flow rates, are investigated. Good agreement is observed between the simulations and the experiments in terms of mean free surface elevations and mean streamwise velocities. Contours of simulated time-averaged streamwise, streamfunction and turbulent kinetic energy are presented and these reveal the effect of the roughness geometry on the water surface response. The analysis of the vertical distribution of the streamwise velocity shows that in the lowest submergence cases no logarithmic layer is present, whereas in the higher submergence cases some evidence of such a layer is observed. For several of the flows moderate to significant water surface deformations are observed, including weak and/or undular hydraulic jumps which affect significantly to the overall streamwise momentum balance. Reynolds shear stress, form-induced stress and form drag are analysed with reference to the momentum balance to assess their contributions to the total hydraulic resistance of these flows. The results show that form-induced stresses are dominant at the water surface and can contribute significantly to the overall drag, but the total resistance in all cases is dominated by form drag due to the presence of the bars.
This paper introduces and discusses numerical methods for free-surface flow simulations and applies a Large Eddy Simulation (LES) based free-surface-resolved CFD method to a couple of flows of hydraulic engineering interest. The advantages, disadvantages and limitations of the various methods are discussed. The review prioritises interface capturing methods over interface tracking methods, as these have shown themselves to be more generally applicable to viscous flows of practical engineering interest, particularly when complex and rapidly changing surface topologies are encountered. Then, a Large-eddy simulation solver that employs the Level Set Method to capture free-surface deformation in 3D flows is presented, as are results from two example calculations that concern complex low submergence turbulent flows over idealised roughness elements and bluff bodies. The results show that the method is capable of predicting very complex flows that are characterised by strong interactions between the bulk flow and the free-surface, and permits the identification of turbulent events and structures that would be very difficult to measure experimentally.
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.