Type 1 diabetes (T1D) is a chronic autoimmune disease in which destruction or damaging of the beta-cells in the islets of Langerhans results in insulin deficiency and hyperglycemia. We only know for sure that autoimmunity is the predominant effector mechanism of T1D, but may not be its primary cause. T1D precipitates in genetically susceptible individuals, very likely as a result of an environmental trigger. Current genetic data point towards the following genes as susceptibility genes: HLA, insulin, PTPN22, IL2Ra, and CTLA4. Epidemiological and other studies suggest a triggering role for enteroviruses, while other microorganisms might provide protection. Efficacious prevention of T1D will require detection of the earliest events in the process. So far, autoantibodies are most widely used as serum biomarker, but T-cell readouts and metabolome studies might strengthen and bring forward diagnosis. Current preventive clinical trials mostly focus on environmental triggers. Therapeutic trials test the efficacy of antigen-specific and antigen-nonspecific immune interventions, but also include restoration of the affected beta-cell mass by islet transplantation, neogenesis and regeneration, and combinations thereof. In this comprehensive review, we explain the genetic, environmental, and immunological data underlying the prevention and intervention strategies to constrain T1D.
In situ tetramer staining reveals the presence of islet antigen-reactive CD8+ T cells in pancreatic islets from deceased type 1 diabetes patients.
Objective. The advent of tumor necrosis factor (TNF)-blocking drugs has provided rheumatologists with an effective, but highly expensive, treatment for the management of established rheumatoid arthritis (RA). Our aim was to explore preclinically the application of camelid anti-TNF VHH proteins, which are singledomain antigen binding (VHH) proteins homologous to human immunoglobulin V H domains, as TNF antagonists in a mouse model of RA.Methods. Llamas were immunized with human and mouse TNF, and antagonistic anti-TNF VHH proteins were isolated and cloned for bacterial production. The resulting anti-TNF VHH proteins were recombinantly linked to yield bivalent mouse and human TNFspecific molecules. To increase the serum half-life and targeting properties, an anti-serum albumin anti-TNF VHH domain was incorporated into the bivalent molecules. The TNF-neutralizing potential was analyzed in vitro. Mouse TNF-specific molecules were tested in a therapeutic protocol in murine collagen-induced arthritis (CIA). Disease progression was evaluated by clinical scoring and histologic evaluation. Targeting properties were evaluated by 99m Tc labeling and gamma camera imaging.Results. The bivalent molecules were up to 500 times more potent than the monovalent molecules. The antagonistic potency of the anti-human TNF VHH proteins exceeded even that of the anti-TNF antibodies infliximab and adalimumab that are used clinically in RA. Incorporation of binding affinity for albumin into the anti-TNF VHH protein significantly prolonged its serum half-life and promoted its targeting to inflamed joints in the murine CIA model of RA. This might explain the excellent therapeutic efficacy observed in vivo.Conclusion. These data suggest that because of the flexibility of their format, camelid anti-TNF VHH proteins can be converted into potent therapeutic agents that can be produced and purified cost-effectively.Tumor necrosis factor (TNF)-blocking drugs are widely considered to be among the most efficient treatments available for rheumatoid arthritis (RA). TNF blockade is also highly therapeutic for several other chronic inflammatory diseases, such as spondylarthropathies, psoriasis, and inflammatory bowel disease (1-3).
Aims/hypothesis Childhood diabetes is thought to usually result from autoimmune beta cell destruction (type 1A) with eventual total loss of beta cells. Analysis of C-peptide in children characterised at diabetes onset for autoantibodies shows heterogeneous preservation of insulin secretion in long-standing diabetes. The aim of this study was to characterise the pancreases of childhood-onset diabetes in order to define the pathological basis of this heterogeneity. Methods We evaluated 20 cadaveric organ donor pancreases of childhood-onset long-term patients for disease heterogeneity and obtained corresponding C-peptide measurements.Results Pancreases from the majority of cadaveric donors contained only insulin-deficient islets (14 of 20). The remaining six patients (30%) had numerous insulinpositive cells within at least some islets, with two different histological patterns. Pattern A (which we would associate with type 1A diabetes) had lobular retention of areas with 'abnormal' beta cells producing the apoptosis inhibitor survivin and HLA class I. In pattern B, 100% of all islets contained normal-appearing but quantitatively reduced beta cells without survivin or HLA class I. Conclusions/interpretation Our data demonstrate that C-peptide secretion in long-standing diabetic patients can be explained by two different patterns of beta cell survival, possibly reflecting different subsets of type 1 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.