A series of experiments has been carried out to obtain experimental knowledge on the distance for fragmentation of a molten core material discharged into the sodium plenum during postulated core disruptive accidents of sodium-cooled fast reactors. In the current experiments, 0.9 kg of molten aluminum (initial temperature: around 1473 K) was discharged into a sodium pool (diameter: 0.11 m, depth: 1 m, initial temperature: 673 K) through a nozzle (inner diameter: 20 mm). Visual observation of the fragmentation behavior was performed using an X-ray imaging system. The following experimental results were obtained. (1) Liquid column of molten aluminum was intensively fragmented almost simultaneously with a rapid expansion of sodium vapor in the vicinity of the column. (2) Due to the intensive fragmentation, penetration of the liquid column was limited to approximately 100 mm or so from the sodium level. (3) The molten aluminum was rapidly cooled after the intensive fragmentation. Based on these results, the distance for fragmentation of the liquid column was estimated to be 100 mm in the experiments. Through the current experiment, useful knowledge was obtained for the future development of an evaluation method of the distance for fragmentation of the molten core material.
Core disruptive accident (CDA) In-vessel retention (IVR) Sodium-cooled fast reactor (SFR) Unprotected loss of flow (ULOF) SAS4A SIMMER-III/IV a b s t r a c t In the original licensing application for the prototype fast-breeder reactor, MONJU, the event progression during an unprotected loss of flow (ULOF), which is one of the technically inconceivable events postulated beyond design basis, was evaluated. Through this evaluation, it was confirmed that radiological consequences could be suitably limited even if mechanical energy was released. Following the Fukushima-Daiichi accident, a new nuclear safety regulation has become effective in Japan. The conformity of MONJU to this new regulation should hence be investigated. The objectives of the present study are to conduct a preliminary evaluation of ULOF for MONJU, reflecting the knowledge obtained after the original licensing application through CABRI experiments and EAGLE projects, and to gain the prospect of in-vessel retention for the conformity of MONJU to the new regulation. The preliminary evaluation in the present study showed that no significant mechanical energy release would take place, and that thermal failure of the reactor vessel could be avoided by the stable cooling of disrupted-core materials. This result suggests that the prospect of invessel retention against ULOF, which lies within the bounds of the original licensing evaluation and conforms to the new nuclear safety regulation, will be gained.
In a probable scenario for core disruptive accidents of Sodium-cooled Fast Reactors (SFRs), it is foreseen that molten core material would be discharged into lower sodium plenums through control rod guide tubes. Such material relocation might lead to a considerable thermal load on lower structures of the reactor vessels, while it has been suggested that in SFRs, as soon as the molten core material is discharged into coolant, it might be fragmented into smaller particles by fuel-coolant interactions and thus efficiently cooled in the reactor vessels. Hence, understanding of the fragmentation is crucial for achieving in-vessel retention of molten core material in SFRs. In this paper, based on the experimental results of a series of fragmentation tests, where around 10 kg of molten alumina (Al 2 O 3 ) was discharged into a sodium pool (depth: 1.3 m, diameter: 0.4 m, temperature: 673 K) through a duct (inner diameter: 40mm to 63 mm) by using an experimental facility at National Nuclear Center of the Republic of Kazakhstan, dominant mechanisms for the fragmentation are discussed. In the present tests, mass median diameters of solidified Al 2 O 3 particles were around 0.3 mm, which were comparable to the values predicted using conventional hydrodynamic-instability theories. However, even though the conventional theories predict that particle size becomes smaller with the increase of Weber number, such tendency was not observed in the present tests. Taking into account that in the present tests, the distances for fragmentation of molten Al 2 O 3 were evaluated to be approximately 60 % to 70 % below the values predicted using an existing representative correlation which regards hydrodynamic instabilities as a dominant fragmentation mechanism, the observed independence on Weber number confirms a mechanism that before hydrodynamic instabilities sufficiently grow to induce fragmentation, thermal phenomena such as local coolant vaporization and resultant vapor expansion significantly accelerate fragmentation in SFRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.