During brain development, neurons and glia are generated from a germinal zone containing both neural stem cells (NSCs) and more limited intermediate neural progenitors (INPs). The signalling events that distinguish between these two proliferative neural cell types remain poorly understood. The Notch signalling pathway is known to maintain NSC character and to inhibit neurogenesis, although little is known about the role of Notch signalling in INPs. Here we show that both NSCs and INPs respond to Notch receptor activation, but that NSCs signal through the canonical Notch effector C-promoter binding factor 1 (CBF1), whereas INPs have attenuated CBF1 signalling. Furthermore, whereas knockdown of CBF1 promotes the conversion of NSCs to INPs, activation of CBF1 is insufficient to convert INPs back to NSCs. Using both transgenic and transient in vivo reporter assays we show that NSCs and INPs coexist in the telencephalic ventricular zone and that they can be prospectively separated on the basis of CBF1 activity. Furthermore, using in vivo transplantation we show that whereas NSCs generate neurons, astrocytes and oligodendrocytes at similar frequencies, INPs are predominantly neurogenic. Together with previous work on haematopoietic stem cells, this study suggests that the use or blockade of the CBF1 cascade downstream of Notch is a general feature distinguishing stem cells from more limited progenitors in a variety of tissues.
The Sox-2 gene is expressed in embryonic stem (ES) cells and neural stem cells. Two transcription enhancer regions, Sox-2 regulatory region 1 (SRR1) and SRR2, were described previously based on their activities in ES cells. Here, we demonstrate that these regulatory regions also exert their activities in neural stem cells. Moreover, our data reveal that, as in ES cells, both SRR1 and SRR2 show their activities rather specifically in multipotent neural stem or progenitor cells but cease to function in differentiated cells, such as postmitotic neurons. Systematic deletion and mutation analyses showed that the same or at least overlapping DNA elements of SRR2 are involved in its activity in both ES and neural stem or progenitor cells. Thus, SRR2 is the first example of an enhancer in which a single regulatory core sequence is involved in multipotent-state-specific expression in two different stem cells, i.e., ES and neural stem cells.
of a Cre expression vector to remove caNotch, doubletransfected cells, in which caNotch was excised, migrated into the cortical plate and differentiated into neurons specific to upper layers. Bromodeoxyuridine-labeling experiments showed that the neurons were born after Cre transfection. These results indicate that cortical progenitors that had been temporarily subjected to Notch activation at an early stage generated neurons at later stages, but that the generation of low-layer neurons was skipped. Moreover, the double-transfected cells gave rise to upper-layer neurons, even after their transplantation into the E13.5 brain, indicating that the developmental state of progenitors is not halted by caNotch activity.
Graphical Abstract Highlights d Vascularized and avascular regions are controlled in a spatially restricted manner d Not all blood vessels are equally associated with neural progenitors d Impaired features of angiogenesis patterning influences neurogenesis d Both hypoxic and perivascular niches are utilized in the developing neocortex
In BriefKomabayashi-Suzuki et al. show that regional angiogenesis establishes separate neovascular hypoxic and perivascular niches in the developing neocortex. These niches are utilized by distinct progenitor cell types to achieve proper expansion, lineage specification, and differentiation of neocortical progenitor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.