The higher-order assembly of chromatin imposes structural organization on the genetic information of eukaryotes and is thought to be largely determined by posttranslational modification of histone tails. Here, we study a 20-kilobase silent domain at the mating-type region of fission yeast as a model for heterochromatin formation. We find that, although histone H3 methylated at lysine 9 (H3 Lys9) directly recruits heterochromatin protein Swi6/HP1, the critical determinant for H3 Lys9 methylation to spread in cis and to be inherited through mitosis and meiosis is Swi6 itself. We demonstrate that a centromere-homologous repeat (cenH) present at the silent mating-type region is sufficient for heterochromatin formation at an ectopic site, and that its repressive capacity is mediated by components of the RNA interference (RNAi) machinery. Moreover, cenH and the RNAi machinery cooperate to nucleate heterochromatin assembly at the endogenous mat locus but are dispensable for its subsequent inheritance. This work defines sequential requirements for the initiation and propagation of regional heterochromatic domains.
Cellular senescence is a stable growth arrest that is implicated in tissue ageing and cancer. Senescent cells are characterized by an upregulation of proinflammatory cytokines, which is termed the senescence-associated secretory phenotype (SASP). NAD + metabolism influences both tissue ageing and cancer. However, the role of NAD + metabolism in regulating the SASP is poorly understood. Here we show that nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the NAD + salvage pathway, governs the proinflammatory SASP independent of senescence-associated growth arrest. NAMPT is regulated by HMGAs during senescence. The HMGAs/NAMPT/NAD + signaling axis promotes the proinflammatory SASP through enhancing glycolysis and mitochondrial respiration. HMGAs/NAMPT promotes the proinflammatory SASP through NAD + -mediated suppression of AMPK kinase, which suppresses p53-mediated inhibition of p38MAPK to enhance NFκb activity. We conclude that NAD + metabolism governs the proinflammatory SASP. Given the tumor-promoting effects of the proinflammatory SASP, our results suggest that anti-ageing dietary NAD + augmentation should be administered with precision.
In senescence, specific genes encoding secreted factors are excluded from senescence-associated heterochromatin foci, but the mechanisms underlying this senescence-associated secretory phenotype (SASP) are unclear. Aird et al. show that the chromatin-bound protein HMGB2 orchestrates the SASP by preventing heterochromatin spreading to these specific loci.
Set2 methylation of histone H3 at lysine 36 (K36) has recently been shown to be associated with RNA polymerase II (Pol II) elongation in Saccharomyces cerevisiae. However, whether this modification is conserved and associated with transcription elongation in other organisms is not known. Here we report the identification and characterization of the Set2 ortholog responsible for K36 methylation in the fission yeast Schizosaccharomyces pombe. We find that similar to the budding yeast enzyme, S. pombe Set2 is also a robust nucleosomeselective H3 methyltransferase that is specific for K36. Deletion of the S. pombe set2؉ gene results in complete abolishment of K36 methylation as well as a slow-growth phenotype on plates containing synthetic medium. These results indicate that Set2 is the sole enzyme responsible for this modification in fission yeast and is important for cell growth under stressed conditions. Using the chromatin immunoprecipitation assay, we demonstrate that K36 methylation in S. pombe is associated with the transcribed regions of Pol II-regulated genes and is devoid in regions that are not transcribed by Pol II. Consistent with a role for Set2 in transcription elongation, we find that S. pombe Set2 associates with the hyperphosphorylated form of Pol II and can fully rescue K36 methylation and Pol II interaction in budding yeast cells deleted for Set2. These results, along with our finding that K36 methylation is highly conserved among eukaryotes, imply a conserved role for this modification in the transcription elongation process.Covalent histone modifications represent a major mechanism by which cells regulate the structure and function of chromatin. A number of different posttranslational modifications are known to occur on histones, including acetylation, methylation, phosphorylation, ubiquitylation, and, more recently, sumoylation (7,17,36,41). While the majority of these modifications are restricted to the flexible N-and C-terminal tail domains of these proteins, a significant number of these modifications have been identified in their highly structured globular domains (11,53). The function of these modifications are not well understood, but it is becoming increasingly clear that they coordinate their effects in the form of a histone code to regulate the complex and diverse activities associated with DNA in chromatin (21,46,50).A large body of work now shows that histone methylation plays a key role in the regulation of chromatin structure and function. In particular, studies show that the methylation of lysine and/or arginine residues regulates diverse cellular functions such as transcriptional repression and activation, heterochromatin formation, X inactivation, and polycomb-mediated gene silencing (10,14,19,23,26,54). More recently, studies have revealed an unexpected role for histone methylation in the process of transcription elongation by RNA polymerase II (Pol II). In the budding yeast Saccharomyces cerevisiae, the histone methyltransferases Set1 and Set2, which catalyze H3 lysine 4 (K4)...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.