These results suggest a beneficial effect of ADA therapy on the periodontal condition of patients with RA, which might be related to differences in serum protein profiles before and after ADA therapy.
A tadpole of bullfrog, Rana catesbeiana, is originally covered with the larval skin over its entire body. Drastic changes arise in both the epidermis and the subcutaneous connective tissue at an early developmental stage, producing the precursor of adult type skin (pre-adult skin). It was found that calcium is a useful probe to detect the region where the precursor formation has occurred because its deposition in the upper part of subcutaneous collagen bundles coincides with the appearance of the pre-adult skin. Whole-mount in situ staining of tadpoles with alizarin red S revealed the initiation site of the premetamorphic transformation of the larval skin into the adult precursor and its ensuing region-dependent expansion. The pre-adult skin first emerged at TK II to III (TK, Taylor and Kollros staging) t lateral sides of the body, which led us to postulate that 'the center for premetamorphic skin transformation' is formed at the specific site in this region. This center moved dorsally and then ventrally, then reached to the most proximal region of the tail, yielding a unique sequential conversion pattern by around TK V when the conversion was completed in the trunk. The present study also visualized the process of the hindlimb skin transformation.
Drug development of a potential analgesic agent 5-n-butyl-7-(3,4,5-trimethoxybenzoylamino)pyrazolo[1,5-a]pyrimidine was withdrawn because of its limited hepatotoxic effects in humans that could not be predicted from regulatory animal or in vitro studies. In vivo formation of glutathione conjugates and covalent binding of a model compound 5-n-butyl-pyrazolo[1,5-a]pyrimidine were investigated in the present study after intravenous administration to chimeric mice with a human or rat liver because of an interesting capability of human cytochrome P450 1A2 in forming a covalently bound metabolite in vitro. Rapid distribution and elimination of radiolabeled 5-n-butyl-pyrazolo[1,5-a]pyrimidine in plasma or liver fractions were seen in chimeric mice after intravenous administration. However, similar covalent binding in liver was detected over 0.17-24 h after intravenous administration. Radio-LC analyses revealed that the chimeric mice with humanized liver preferentially gave the 3-hydroxylated metabolite and its glutathione conjugate in the plasma and liver. On the contrary, chimeric mice with a rat liver had some rat-specific metabolites in vivo. Analyses by electrophoresis with accelerator mass spectrometry of in vivo radiolabeled liver proteins in chimeric mice revealed that bioactivated 5-n-butyl-pyrazolo[1,5-a]pyrimidine bound nonspecifically to a variety of microsomal proteins including human P450 1A2 as well as cytosolic proteins in the livers from chimeric mice with humanized liver. These results suggest that the hepatotoxic model compound 5-n-butyl-pyrazolo[1,5-a]pyrimidine was activated by human liver microsomal P450 1A2 to reactive intermediate(s) in vivo in humanized chimeric mice and could relatively nonspecifically bind to biomolecules such as P450 1A2 and other proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.