Nonhuman primate (NHP) models will expedite therapeutics and vaccines for COVID-19 into clinical trials. We compared acute SARS-CoV-2 infection in young and old rhesus macaques and baboons and old marmosets. Macaques had clinical signs of viral infection, mild-to-moderate pneumonitis and extra-pulmonary pathologies; both age groups recovered in two weeks. Baboons had prolonged viral RNA shedding and substantially more lung inflammation compared with macaques. Inflammation in bronchoalveolar lavage (BAL) was increased in old versus young baboons. Using techniques like CT imaging, immunophenotyping, alveolar/peripheral cytokine responses and immunohistochemical analyses, we delineated cellular immune responses to SARS-CoV-2 infection in macaque and baboon lungs, including innate and adaptive immune cells and a prominent Type I-interferon response. Macaques developed T cell memory phenotype/responses and bystander cytokine production. Old macaques had lower titres of SARS-CoV-2-specific IgG antibody levels compared with young. Acute respiratory distress in macaques and baboons recapitulates the progression of COVID-19 in humans, making them suitable as models to test vaccines and therapies.
Many models from foraging theory and movement ecology assume that resources are encountered randomly. If food locations, types and values are retained in memory, however, search time could be significantly reduced, with concurrent effects on biological fitness. Despite this, little is known about what specific characteristics of foods, particularly those relevant to profitability, nonhuman animals can remember. Building upon previous observations, we hypothesized that chimpanzees (Pan troglodytes), after observing foods being hidden in a large wooded test area they could not enter, and after long delays, would direct (through gesture and vocalization) experimentally naïve humans to the reward locations in an order that could be predicted beforehand by the spatial and physical characteristics of those items. In the main experiment, various quantities of almonds, both in and out of shells and sealed in transparent bags, were hidden in the test area. The chimpanzees later directed searchers to those items in a nonrandom order related to quantity, shell presence/absence, and the distance they were hidden from the subject. The recovery sequences were closely related to the actual e/h profitability of the foods. Predicted recovery orders, based on the energetic value of almonds and independently-measured, individual-specific expected pursuit and processing times, were closely related to observed recovery orders. We argue that the information nonhuman animals possess regarding their environment can be extensive, and that further comparative study is vital for incorporating realistic cognitive variables into models of foraging and movement.
Though researchers have studied lowland gray langurs extensively, there is little information about the Himalayan populations. We provide foraging data from a field study of Himalayan langurs in Langtang National Park, Nepal at 3000-4000 m elevation. Phenological records show marked seasonality in resource abundance, with extremely low availability in winter, increasing abundance in spring and monsoon, and a reduction in fall. Activity budgets indicated greater time devoted to feeding as total vegetation abundance decreased. Diet included leaf buds, ripe fruit, and evergreen mature leaves in winter; deciduous young leaves in spring; and deciduous mature leaves in the monsoon and fall. Supplemental resources, such as underground storage organs, bark, and herbaceous vegetation, were also seasonally important. Among plant part classes included in the phenological sample, abundance and consumption correlate positively for all primary food resources except evergreen mature leaves and unripe fruit. Daily path lengths varied by season and, when controlled for overall vegetation abundance, positively relate to the consumption of soft underground storage organs, fruits, and deciduous mature leaves. The results contradict the common generalization of leaves as ubiquitous or nonpatchy resources.
SummaryThere are no known cures or vaccines for COVID-19, the defining pandemic of this era. Animal models are essential to fast track new interventions and nonhuman primate (NHP) models of other infectious diseases have proven extremely valuable. Here we compare SARS-CoV-2 infection in three species of experimentally infected NHPs (rhesus macaques, baboons, and marmosets). During the first 3 days, macaques developed clinical signatures of viral infection and systemic inflammation, coupled with early evidence of viral replication and mild-to-moderate interstitial and alveolar pneumonitis, as well as extra-pulmonary pathologies. Cone-beam CT scans showed evidence of moderate pneumonia, which progressed over 3 days. Longitudinal studies showed that while both young and old macaques developed early signs of COVID-19, both groups recovered within a two-week period. Recovery was characterized by low-levels of viral persistence in the lung, suggesting mechanisms by which individuals with compromised immune systems may be susceptible to prolonged and progressive COVID-19. The lung compartment contained a complex early inflammatory milieu with an influx of innate and adaptive immune cells, particularly interstitial macrophages, neutrophils and plasmacytoid dendritic cells, and a prominent Type I-interferon response. While macaques developed moderate disease, baboons exhibited prolonged shedding of virus and extensive pathology following infection; and marmosets demonstrated a milder form of infection. These results showcase in critical detail, the robust early cellular immune responses to SARS-CoV-2 infection, which are not sterilizing and likely impact development of antibody responses. Thus, various NHP genera recapitulate heterogeneous progression of COVID-19. Rhesus macaques and baboons develop different, quantifiable disease attributes making them immediately available essential models to test new vaccines and therapies.
Optimal foraging theory has only been sporadically applied to nonhuman primates. The classical prey model, modified for patch choice, predicts a sliding “profitability threshold” for dropping patch types from the diet, preference for profitable foods, dietary niche breadth reduction as encounter rates increase, and that exploitation of a patch type is unrelated to its own abundance. We present results from a one-year study testing these predictions with Himalayan langurs (Semnopithecus entellus) at Langtang National Park, Nepal. Behavioral data included continuous recording of feeding bouts and between-patch travel times. Encounter rates were estimated for 55 food types, which were analyzed for crude protein, lipid, free simple sugar, and fibers. Patch types were entered into the prey model algorithm for eight seasonal time periods and differing age-sex classes and nutritional currencies. Although the model consistently underestimated diet breadth, the majority of non-predicted patch types represented rare foods. Profitability was positively related to annual/seasonal dietary contribution by organic matter estimates, while time estimates provided weaker relationships. Patch types utilized did not decrease with increasing encounter rates involving profitable foods, although low-ranking foods available year-round were taken predominantly when high-ranking foods were scarce. High-ranking foods were taken in close relation to encounter rates, while low-ranking foods were not. The utilization of an energetic currency generally resulted in closest conformation to model predictions, and it performed best when assumptions were most closely approximated. These results suggest that even simple models from foraging theory can provide a useful framework for the study of primate feeding behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.