The biphasic waveform that can predict for disseminated intravascular coagulation (DIC) is due to the formation of a calcium-dependent complex between C reactive protein (CRP) and very low density lipoprotein (VLDL). As thrombin generation is pivotal to DIC, this aspect has been specifically investigated and the VLDL component has been found to increase prothrombinase activity via both quantitative and qualitative changes. The specific prothrombinase activity of VLDL from patients manifesting the biphasic waveform was 2.5 times that of normal individuals or critically ill patients without the biphasic waveform. This activity was due to an increase in anionic phospholipid surfaces that could be inhibited with excess annexin V and which was dependent on structurally intact apolipoprotein B. The qualitative change appeared to be due to a deficiency of phosphatidylethanolamine in VLDL from patients with the biphasic waveform. The functional consequence of this enhanced prothrombinase activity was an increased procoagulant effect in plasma. Using a modified activated partial thromboplastin time assay, the mean normal clot time decreased significantly when VLDL from patients with biphasic waveforms was substituted. These results indicate that VLDL derived from patients with the biphasic waveform can enhance thrombin procoagulant activity. As the CRP-VLDL complex exists in vivo, it could have a pathogenic role in disseminating the process of intravascular coagulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.