In this case report we study the dynamics of the SMR band in a subject affected from Facioscapulohumeral Muscular Dystrophy and subjected to Ken Ware Neuro Physics treatment. We use the Generalized Mutual Information (GMI) to analyze in detail the SMR band at rest during the treatment. Brain dynamics responds to a chaotic-deterministic regime with a complex behaviour that constantly self-rearranges and self-organizes such dynamics in function of the outside requirements. We demonstrate that the SMR chaotic dynamics responds directly to such regime and that also decreasing in EEG during muscular activity really increases its ability of self-arrangement and self-organization in brain. The proposed novel method of the GMI is arranged by us so that it may be used in several cases of clinical interest. In the case of muscular dystrophy here examined, GMI enables us to quantify with accuracy the improvement that the subject realizes during such treatment.
This is a study on autonomic neuroscience. In a previous paper in [1], we studied a subject affected from facioscapulohumeral muscular dystrophy before and after Ken Ware treatment (NPT). Using the non linear methodology of the Generalized Mutual Information (GMI) analysis of Sensory Motor Rhythm, we produced detailed results evidencing that the mentioned NPT treatment involved a net improvement of the patient under his subjective psychological condition, and in particular, under the neurological and sensory motor profile. We quantified with accuracy the improvement that the subject realized during such treatment. Of course, previous studies of several authors have evidenced that muscular dystrophies are strongly linked to a profound ANS disfunction. Therefore, the aim of the present study was to analyze the ANS of the subject before and after the treatment. We performed analysis in time as well as in frequency domain and by using non linear methods. The basic result of the paper was that, according to our analysis, the subjects started with a serious ANS disfunction before the NPT treatment and that a net improvement was obtained after this therapy. All the examined parameters resulted strongly altered before the treatment and all they returned in the normal range after the NPT.
This paper discusses a case of muscular dystrophy on which it has been performed HRV analysis. The results that we obtain evidence that the subject delineates a net ANS dysfunction. All the basic parameters relating standard time and frequency domain of HRV analysis result profoundly altered. Examination by Poicaré plot evidences in particular that the subject has an atrial fibrillation. Non linear indexes ApEn and Samp En evidence the very high condition of risk of the subject. The merging indication is for the cardiologist and scholars in cardiovascular disease to perform always ANS investigation in subjects in case of muscular dystrophy. After the NPT treatment, the subject obtains a net improvement.
We analyze muscular dystrophy recorded by sEMG and use standard methodologies and nonlinear chaotic methods here including the RQA. We reach sufficient evidence that the sEMG signal contains a large chaotic component. We have estimated the correlation dimension (fractal measure), the largest Lyapunov exponent, the LZ complexity and the %Rec and %Det of the RQA demonstrating that such indexes are able to detect the presence of repetitive hidden patterns in sEMG which, in turn, senses the level of MU synchronization within the muscle. The results give also an interesting methodological indication in the sense that it evidences the manner in which nonlinear methods and RQA must be arranged and applied in clinical routine in order to obtain results of clinical interest. We have studied the muscular dystrophy and evidence that the continuous regime of chaotic transitions that we have in muscular mechanisms may benefit in this pathology by the use of the NPT treatment that we have considered in detail in our previous publications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.