Among the many potential applications of carbon nanotubes (CNT), its usage to strengthen polymers has been paid considerable attention due to the exceptional stiffness, excellent strength, and the low density of CNT. This has provided numerous opportunities for the invention of new material systems for applications requiring high strength and high modulus. Precise control over processing factors, including preserving intact CNT structure, uniform dispersion of CNT within the polymer matrix, effective filler–matrix interfacial interactions, and alignment/orientation of polymer chains/CNT, contribute to the composite fibers’ superior properties. For this reason, fabrication methods play an important role in determining the composite fibers’ microstructure and ultimate mechanical behavior. The current state-of-the-art polymer/CNT high-performance composite fibers, especially in regards to processing–structure–performance, are reviewed in this contribution. Future needs for material by design approaches for processing these nano-composite systems are also discussed.
In order to improve stress transfer between polymer matrixes and nanofillers, controlling the structure development in the interphase region during composite processing is a necessity. For polyacrylonitrile (PAN)/single-wall carbon nanotubes (SWNT) composites, the formation of the PAN interphase in the presence of the SWNT as a function of processing conditions is studied. Under these conditions, three distinct interfacial coating morphologies of PAN are observed on SWNT. In the semidilute polymer concentration regime subjected to shearing, PAN extended-chain tubular coatings are formed on SWNT. Dilute PAN/SWNT quiescent solutions subjected to cooling yields hybrid periodic shish-kebab structures (first observation for PAN polymer), and dilute PAN/SWNT quiescent solutions subjected to rapid cooling results in the formation of an irregular PAN crystalline coating on the SWNT.
A B S T R A C TOrdered polyacrylonitrile (PAN) interphase structures were formed in solution-cast PAN/carbon nanotube (CNT) composite films by enhancing polymer crystallization conditions and processing parameters for five types of CNTs. All film samples were heat-treated using similar stabilization and carbonization (up to 1100°C) processes. Both the precursor and carbonized materials were characterized by electron microscopy and X-ray spectroscopy. Highly ordered graphitic structure was formed predominantly in the carbonized materials at 1100°C (i.e., 1500°C lower than the temperature used in a commercial graphitization process). The ordering of the graphite structure formed at 1100°C was further improved by heat treatment up to 2100°C. Multiple characterization results indicate that the early onset of PAN conversion to graphite is directly related to the polymer interphase formation as well as the CNT type. Based on the stabilization and carbonization parameters used in this study, PAN/single-wall carbon nanotube (SWNT) samples showed more prevalent graphite formation at 1100°C. This work demonstrates the influence of CNT type regarding interfacial confinement toward this low-temperature polymer-to-graphite conversion process.
Selective deposition and preferential alignment of two-dimensional (2D) nanoparticles on complex and flexible three-dimensional (3D) substrates can tune material properties and enrich structural versatility for broad applications in wearable health monitoring, soft robotics, and human−machine interfaces. However, achieving precise and scalable control of the morphology of layer-structured nanomaterials is challenging, especially constructing hierarchical architectures consistent from nanoscale alignment to microscale patterning to complex macroscale landscapes. This work demonstrated a scalable and straightforward hybrid 3D printing method for orientational alignment and positional patterning of 2D MXene nanoparticles. This process involved (i) surface topology design via microcontinuous liquid interface production (μCLIP) and (ii) directed assembly of MXene flakes via capillarity-driven direct ink writing (DIW). With well-managed surface patterning geometry and printing ink quality control, the surface microchannels constrained MXene suspensions and leveraged microforces to facilitate preferential alignment of MXene sheets via layer-by-layer additive depositions. The printed devices displayed multifunctional properties, i.e., anisotropic conductivity and piezoresistive sensing with a wide sensing range, high sensitivity, fast response time, and mechanical durability. Our fabrication technique shows enormous potential for rapid, digital, scalable, and low-cost manufacturing of hierarchical structures, especially for micropatterning and aligning 2D nanoparticles not easily accessible through conventional processing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.