Vendor-independent software tools for quantification of small molecules and metabolites are lacking, especially for targeted analysis workflows. Skyline is a freely available, open-source software tool for targeted quantitative mass spectrometry method development and data processing with a ten-year history supporting 6 major instrument vendors. Designed initially for proteomic analysis, we describe the expansion of Skyline to data for small molecule analysis, including selected reaction monitoring (SRM), high-resolution mass spectrometry (HRMS), and calibrated quantification. This fundamental expansion of Skyline from a peptide-sequence centric tool to a molecule-centric tool makes it agnostic to the source of the molecule while retaining Skyline features critical for workflows in both peptide and more general biomolecular research. The data visualization and interrogation features already available in Skyline -such as peak picking, chromatographic alignment, and transition selection -have been adapted to support small molecule data, including metabolomics. Herein, we explain the conceptual workflow for small molecule analysis using Skyline, demonstrate Skyline performance benchmarked against a comparable *
In this paper, high-resolution nano-electrospray ionization-trapped ion mobility spectrometry coupled to mass spectrometry (nESI-TIMS-MS) is used for the study of hydroxylated polybrominated diphenyl ether (OH-PBDE) metabolites. In particular, experimental ion-neutral collision cross sections (CCS) were measured for five structural OH-PBDE isomers using TIMS-MS. Candidate structures were proposed for each IMS band observed in good agreement with the experimental CCS measurements (5% error). The analytical power of TIMS-MS to baseline and partially separate structural isomers of OH-BDE in binary and ternary mixtures is shown for single charge species with a mobility resolving power of RIMS ~ 400. This work provides the proof of concept for the analysis of low concentration OH-PBDE in environmental samples based on accurate collision cross section and mass measurements without the need for derivatization and pre-fractionation protocols, thus significantly reducing the cost and analysis time.
A challenge facing metabolomics in the analysis of large human cohorts is the cross-laboratory comparability of quantitative metabolomics measurements. In this study, 14 laboratories analyzed various blood specimens using a common experimental protocol provided with Biocrates AbsoluteIDQ p400HR kit, to quantify up to 408 metabolites. The specimens included human plasma and serum from male and female donors, mouse and rat plasma as well as NIST SRM 1950 reference plasma. The metabolite classes covered range from polar (e.g. amino acids and biogenic amines), to nonpolar (e.g. diacyl-and triacyl-glycerols), and span 11 common metabolite classes. The manuscript describes a strict system suitability testing (SST) criteria used to evaluate each laboratory's readiness to perform the assay, and provides the SST Skyline documents for public dissemination. The study found approximately 250 metabolites were routinely quantified in the sample types tested, using Orbitrap instruments. Inter-laboratory variance for the NIST SRM-1950 has a median of 10% for amino acids, 24% for biogenic amines, 38% for acylcarnitines, 25% for glycerolipids, 23% for glycerophospholipids, 16% for cholesteryl esters, 15% for sphingolipids, and 9% for hexoses. Comparing to consensus values for NIST SRM-1950, nearly 80% of comparable analytes demonstrated bias of <50% from the reference value. The findings of this study result in recommendations of best practices for system suitability, quality control, and calibration. We demonstrate that with appropriate controls, high-resolution metabolomics can provide accurate results with good precision across laboratories, and the p400HR therefore is a reliable approach for generating consistent and comparable metabolomics data.
In the present work, the potential for rapid, targeted analysis of hydroxylated metabolites of polychlorinated biphenyls (OH-PCBs) in diluted human blood plasma using liquid chromatography coupled with trapped ion mobility spectrometry and TOF high resolution mass spectrometry (LC-TIMS-TOF MS) was evaluated. Experimental OH-PCB collisional cross section (CCS) and gas-phase candidate structures (<3% error) are reported for the first time and used, in addition to the LC retention time and accurate /, as OH-PCB identification features in order to increase the detection selectivity. The proposed LC-TIMS-TOF MS workflow combines a "dilute-and-shoot" sample preparation strategy, a robust liquid chromatography step, a high-resolving power mobility separation (R ~ 150-250) and high-resolution mass spectrometry (R ~ 30-40k) for the separation, identification and quantification of common OH-PCB isomers with limits of detection comparable to traditional workflows (e.g., LOD and LOQ of ~10 pg/mL and ~50 pg/mL, respectively). The higher selectivity and low detection limits provides multiple advantages compared to current methodologies that typically require long, labor-intensive preparation and/or derivatization steps prior to gas or liquid chromatography-mass spectrometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.