Highlights d A given stimulus preferentially activates a single TrpA1 isoform in vivo d Polymodal nociception requires co-expression of TrpA1 isoforms in nociceptors d Each TrpA1 isoform has a unique expression profile d isoEXPRESS is a new and versatile framework targeting alternative splicing
The cation channel transient receptor potential vanilloid 4 (TRPV4) is one of the few identified ion channels that can directly cause inherited neurodegeneration syndromes, but the molecular mechanisms are unknown. Here, we show that in vivo expression of a neuropathy-causing TRPV4 mutant (TRPV4R269C) causes dose-dependent neuronal dysfunction and axonal degeneration, which are rescued by genetic or pharmacological blockade of TRPV4 channel activity. TRPV4R269C triggers increased intracellular Ca2+ through a Ca2+/calmodulin-dependent protein kinase II (CaMKII)-mediated mechanism, and CaMKII inhibition prevents both increased intracellular Ca2+ and neurotoxicity in Drosophila and cultured primary mouse neurons. Importantly, TRPV4 activity impairs axonal mitochondrial transport, and TRPV4-mediated neurotoxicity is modulated by the Ca2+-binding mitochondrial GTPase Miro. Our data highlight an integral role for CaMKII in neuronal TRPV4-associated Ca2+ responses, the importance of tightly regulated Ca2+ dynamics for mitochondrial axonal transport, and the therapeutic promise of TRPV4 antagonists for patients with TRPV4-related neurodegenerative diseases.
Injured neurons exhibit cell type-specific axon regeneration, but the underlying mechanisms remain elusive. Two subtypes of Drosophila sensory neurons show distinct regenerative competence. Here, we show that axotomy induces long-lasting burst firing and Ca 2+ spikes specifically in the regenerative subtype. Genetic silencing of firing in the regenerative subtype inhibits regeneration. Optogenetic stimulation of the nonregenerative subtype reveals that activity patterns critically determine regeneration; burst firing triggers Ca 2+ spikes and suffices to induce regeneration, while tonic firing fails to induce Ca 2+ spikes and regeneration. We further show the L-type Ca 2+ channel, Dmca1D, regulates Ca 2+ spikes and regeneration. Intriguingly, the regenerative neuronal subtype expresses higher levels of Dmca1D, and overexpression of Dmca1D in the non-regenerative subtype facilitates regeneration. Our studies indicate that injury induces cell type-specific neuronal activities, which act through Ca 2+ spikes to govern regeneration, and suggest that precise control of neuronal activity patterns is an effective way to promote regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.