In this paper, we introduce the hierarchical B-spline complex of discrete differential forms for arbitrary spatial dimension. This complex may be applied to the adaptive isogeometric solution of problems arising in electromagnetics and fluid mechanics. We derive a sufficient and necessary condition guaranteeing exactness of the hierarchical B-spline complex for arbitrary spatial dimension, and we derive a set of local, easy-to-compute, and sufficient exactness conditions for the two-dimensional setting. We examine the stability properties of the hierarchical B-spline complex, and we find that it yields stable approximations of both the Maxwell eigenproblem and Stokes problem provided that the local exactness conditions are satisfied. We conclude by providing numerical results showing the promise of the hierarchical B-spline complex in an adaptive isogeometric solution framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.