A Mg(OH)2–C transparent conductive film was prepared using the sputtering method by the initial formation of a Mg-C film generated by the alternate layering of Mg and C on a rotating substrate and subsequent exposure of the film to atmospheric water vapor. To examine the influence exerted by the Mg/C layers of the starting film sample on semiconductivity,evaluations of the electrical conductivity properties of the film during the hydroxylation process and the optical properties after the hydroxylation process were carried out. As a result, although no effects on the characteristics of the electrical conductivity properties associated with the composition or number of layers in the films could be confirmed, it was determined that the films possessed the characteristics of semiconductors. On the other hand, the optical properties were found to be affected by the composition and number of layers of the Mg/C films.
Effects of surface damaging and overcoating on the formation of hillocks and whiskers on pure Al films deposited on to a glass substrate, Philosophical Magazine A, 81:2, 275-285,
The low resistance layer called p-type Surface Conductive Layer (PSCL) is formed when the nitrogen dioxide (NO2) was absorbed onto hydrogen-terminated surface, although the diamond is generally isolator. The PSCL conductance is dependent on NO2 concentration in the atmosphere, and this reaction has reversibility. The diamond having these characteristics can apply to gas sensor. In this study, the gas responsivity of PSCL was improved by surface treatment. The changes in the responsivity were evaluated from serial measurements of the conductance in the gas atmosphere. From this evaluation, it was observed that the adsorption and desorption of NO2 were faster via the surface conditions variation by treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.