Biomaterials traditionally used for wound healing can act as a temporary barrier to halt bleeding, prevent infection, and enhance regeneration. Hydrogels are among the best candidates for wound healing owing to their moisture retention and drug-releasing properties. Photo-polymerization using visible light irradiation is a promising method for hydrogel preparation since it can easily control spatiotemporal reaction kinetics and rapidly induce a single-step reaction under mild conditions. In this study, photocrosslinked gelatin hydrogels were imparted with properties namely fast wound adherence, strong wet tissue surface adhesion, greater biocompatibility, long-term bFGF release, and importantly, ease of use through the modification and combination of natural bio-macromolecules. The production of a gelatin hydrogel made of natural gelatin (which is superior to chemically modified gelatin), crosslinked by visible light, which is more desirable than UV light irradiation, will enable its prolonged application to uneven wound surfaces. This is due to its flexible shape, along with the administration of cell growth factors, such as bFGF, for tissue regeneration. Further, the sustained release of bFGF enhances wound healing and skin flap survival. The photocrosslinking gelatin hydrogel designed in this study is a potential candidate to enhance wound healing and better skin flap survival.
Background
A pilot study reported an autologous buccal mucosal cell transplant in humans through the trans-urethral route using the buccal epithelium expanded and encapsulated in scaffold—hybrid approach to urethral stricture (BEES-HAUS), a minimally invasive approach to treat urethral stricture. Although successful outcomes were achieved in that study, for further validation, it is essential to prove that the transplanted buccal epithelium was engrafted over the urothelium through histological examination of the urethra, harvested post-transplant, which is infeasible in humans. Herein, we report the successful creation of an animal model of urethral stricture and the engraftment of epithelial cells derived from autologous buccal mucosal tissue, encapsulated in a thermo-reversible gelation polymer (TGP) scaffold, transplanted by trans-urethral route.
Methods
An animal model of urethral stricture was created in Japanese white male rabbits using electro-coagulation. Buccal tissue was harvested from the rabbits and subjected to enzyme digestion, followed by 5–7 days of in vitro culture in conventional two-dimensional (2D) culture and in a 3D platform of thermo-reversible gelation polymer (3D-TGP) culture. The cells harvested from the groups were mixed and encapsulated and transplanted with TGP, by transurethral catheterization. Fourteen days later, the urethra was harvested and subjected to histological examination. The buccal biopsy tissue, cells after digestion and cells post-culture were also subjected to histological examination. Urethrogram and endoscopy images were recorded at different time points.
Results
The stricture was successfully created, with the coagulated area markedly stenosed. Histological staining of the cells after in vitro processing showed that the cells grew with native epithelial and rounded cell morphology in 3D-TGP while they differentiated into fibroblast like-cells in 2D culture. Histological staining of the urethral tissue after transplantation revealed the engraftment of the transplanted buccal mucosal cells, with stratified squamous epithelium over the specialized stratified urothelium in the urethrotomy site.
Conclusion
We used histology to prove the successful engraftment of TGP-encapsulated buccal mucosal epithelial cells in an animal model of urethral injury with healing of the injured tissue. The model of urethral stricture and cell therapy, using a transurethral approach, recapitulates the previously reported BEES-HAUS approach and lays the foundation for larger multi-centric translational clinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.