High-yielding one-pot synthesis of glucose from cellulose and pentoses/hexoses from real biomass is achieved by using simple activated carbons and 0.012% HCl in water. Ball-milling cellulose and the carbon together created good physical contact between the solid substrate and solid catalyst before the reaction, selectively and drastically improving the depolymerization rate of cellulose to oligomers. Thus, our methodology overcomes a major obstacle in this type of reaction, namely, that the collision between a solid catalyst and a solid substrate is limited. Mechanistic studies have suggested that the active sites of the carbons are weakly acidic functional groups, in which vicinal carboxylic and phenolic groups synergistically work for the hydrolysis reaction.
Synthesis of a solid chelating ligand for the formation of efficient heterogeneous catalysts is highly desired in the fields of organic transformation and solar energy conversion. Here, we report the surfactant-directed self-assembly of a novel periodic mesoporous organosilica (PMO) containing 2,2'-bipyridine (bpy) ligands within the framework (BPy-PMO) from a newly synthesized organosilane precursor [(i-PrO)3Si-C10H6N2-Si(Oi-Pr)3] without addition of any other silane precursors. BPy-PMO had a unique pore-wall structure in which bipyridine groups were densely and regularly packed and exposed on the surface. The high coordination ability to metals was also preserved. Various bipyridine-based metal complexes were prepared using BPy-PMO as a solid chelating ligand such as Ru(bpy)2(BPy-PMO), Ir(ppy)2(BPy-PMO) (ppy = 2-phenylpyridine), Ir(cod)(OMe)(BPy-PMO) (cod = 1,5-cyclooctadiene), Re(CO)3Cl(BPy-PMO), and Pd(OAc)2(BPy-PMO). BPy-PMO showed excellent ligand properties for heterogeneous Ir-catalyzed direct C-H borylation of arenes, resulting in superior activity, durability, and recyclability to the homogeneous analogous Ir catalyst. An efficient photocatalytic hydrogen evolution system was also constructed by integration of a Ru-complex as a photosensitizer and platinum as a catalyst on the pore surface of BPy-PMO without any electron relay molecules. These results demonstrate the great potential of BPy-PMO as a solid chelating ligand and a useful integration platform for construction of efficient molecular-based heterogeneous catalysis systems.
Cellulose is converted into sorbitol and related sugar compounds over water-tolerant and durable carbon-supported Pt catalysts under aqueous hydrogenation conditions. Pre-treatment of cellulose with ball-milling effectively reduces the crystallinity and particle size of cellulose, which results in 10 high conversion of cellulose to sorbitol and mannitol. The selectivity of sorbitol increases by using Cl-free metal precursors in the catalyst preparation as residual Cl on the catalysts promotes the side-reactions. The transformation of cellulose to sorbitol consists of the hydrolysis of cellulose to glucose via water-soluble oligosaccharides and the successive hydrogenation of glucose to sorbitol. The hydrolysis of cellulose is the rate-determining step, and the Pt catalysts promote both the 15 hydrolysis and the hydrogenation steps.
An immobilized monophosphine-Ir system, which was prepared in situ from [Ir(OMe)(cod)](2) and a silica-supported, compact phosphine, showed high activities and selectivities for the borylation of aromatic C-H bonds with bis(pinacolato)diboron. This system was effective not only for the borylation of benzene but also for the ortho borylation of arenes with directing groups, such as ester, amide, sulfonate, acetal, alkoxymethyl, and chloro groups, under mild reaction conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.