Waste incineration fly ash and bone powder could be successfully recycled to calcium phosphate hydrogel, a type of fast proton conductor. The electric conductivity of the crystallized hydrogel from them was compared with that from calcium carbonate reagent. It was found that the conductivity of the hydrogel from bone powder is almost equal to that from calcium carbonate reagent, which is higher than that from incineration fly ash. Because the crystallized hydrogel from incineration ash has a lower crystallinity than that from bone powder and calcium carbonate reagent. However, the difference of the conductivity among them can be hardly observed above 100 degrees C. The fuel cell with membrane electrode assembly (MEA) using the calcium phosphate hydrogel membrane prepared from incineration fly ash and bone powder was observed to generate electricity. The performance of fuel cells having the hydrogel membrane obtained from all raw materials increases with the cell temperature, and the fuel cell containing the hydrogel membrane from incineration fly ash has the highest dependence of the fuel cell performance. For this reason, the difference in the cell performance among them can be hardly observed above 120 degrees C. This tendency agrees with the change in the electric conductivity with the temperature. Further, the performance of all fuel cells with the hydrogel membrane is superior to that of the fuel cell with perfluorosulfonic polymer membrane at temperatures greater than approximately 85 degrees C.
a b s t r a c tWaste incineration fly ash was successfully recycled to calcium phosphate hydrogel, a type of fast proton conductor. The crystallized hydrogel from incineration fly ash had a lower electric conductivity and a lower crystallinity than that from calcium carbonate reagent. However, the difference in electric conductivity between these crystallized hydrogels decreases with temperature. This was due to the presence of potassium in the incineration fly ash. The fuel cell with a membrane electrode assembly (MEA) using the calcium phosphate hydrogel membrane prepared from incineration fly ash was observed to generate electricity. The performance of this fuel cell was almost equal to that of a mixture of K 2 CO 3 and CaCO 3 reagents; further, the performance of the former was superior to the fuel cell with a perfluorosulfonic polymer membrane at temperatures greater than approximately 85 C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.