Gout based on hyperuricemia is a common disease with a genetic predisposition, which causes acute arthritis. The ABCG2/BCRP gene, located in a gout-susceptibility locus on chromosome 4q, has been identified by recent genome-wide association studies of serum uric acid concentrations and gout. Urate transport assays demonstrated that ABCG2 is a high-capacity urate secretion transporter. Sequencing of the ABCG2 gene in 90 hyperuricemia patients revealed several nonfunctional ABCG2 mutations, including Q126X. Quantitative trait locus analysis of 739 individuals showed that a common dysfunctional variant of ABCG2, Q141K, increases serum uric acid. Q126X is assigned to the different disease haplotype from Q141K and increases gout risk, conferring an odds ratio of 5.97. Furthermore, 10% of gout patients (16 out of 159 cases) had genotype combinations resulting in more than 75% reduction of ABCG2 function (odds ratio, 25.8). Our findings indicate that nonfunctional variants of ABCG2 essentially block gut and renal urate excretion and cause gout.
ADAMTS13 consists of a reprolysin-type metalloprotease domain followed by a disintegrin domain, a thrombospondin type 1 motif (TSP1), Cys-rich and spacer domains, seven more TSP1 motifs, and two CUB domains. ADAMTS13 limits platelet accumulation in microvascular thrombi by cleaving the Tyr 1605 -Met 1606 bond in von Willebrand factor, and ADAMTS13 deficiency causes a lethal syndrome, thrombotic thrombocytopenic purpura. ADAMTS13 domains required for substrate recognition were localized by the characterization of recombinant deletion mutants. Constructs with C-terminal His 6 and V5 epitopes were expressed by transient transfection of COS-7 cells or in a baculovirus system. No association with extracellular matrix or cell surface was detected for any ADAMTS13 variant by immunofluorescence microscopy or chemical modification. Both plasma and recombinant full-length ADAMTS13 cleaved von Willebrand factor subunits into two fragments of 176 kDa and 140 kDa. Recombinant ADAMTS13 was divalent metal ion-dependent and was inhibited by IgG from a patient with idiopathic thrombotic thrombocytopenic purpura. ADAMTS13 that was truncated after the metalloprotease domain, the disintegrin domain, the first TSP1 repeat, or the Cys-rich domain was not able to cleave von Willebrand factor, whereas addition of the spacer region restored protease activity. Therefore, the spacer region is necessary for normal ADAMTS13 activity toward von Willebrand factor, and the more Cterminal TSP1 and CUB domains are dispensable in vitro.Thrombotic thrombocytopenic purpura (TTP) 1 is a syndrome characterized by microangiopathic hemolytic anemia and thrombocytopenia, and it may be accompanied by neurological dysfunction, renal failure, and fever (1-3). If untreated, the mortality can exceed 90%, but plasma-exchange therapy has reduced the mortality to less than 20% (4). Although the pathophysiology of TTP is not fully understood, a plausible model has been proposed in which the proteolysis of von Willebrand factor (VWF) plays a central role (5). VWF is a multimeric protein that binds receptors on the surface of platelets and in connective tissue, thereby mediating the adhesion of platelets to sites of vascular injury. If unchecked, the process can lead to microvascular thrombosis. A plasma VWF-cleaving protease has been described that acts on the Tyr 1605 -Met 1606 bond in the central A2 domain of the VWF subunit, and cleavage is stimulated by shear forces like those occurring at sites of thrombosis or by low concentrations of urea or guanidine (6, 7). This proteolytic reaction limits VWF-dependent platelet adhesion, and most adults with idiopathic TTP have an acquired autoantibody that inhibits the VWF-cleaving protease (8, 9). Therefore, therapeutic plasma exchange may ameliorate TTP by replacing the missing protease and removing the inhibitory antibody.The VWF-cleaving protease was recently purified and identified as a new member of the ADAMTS family of metalloproteases (10, 11), so named for the combination of a disintegrin-like and metalloprote...
Drug resistance acquired by cancer cells has led to treatment failure. To understand the regulatory network underlying docetaxel resistance in breast cancer cells and to identify molecular targets for therapy, we tested small interfering RNAs (siRNAs) against 36 genes whose expression was elevated in human nonresponders to docetaxel for the ability to promote apoptosis of docetaxel-resistant human breast cancer cells (MCF7-ADR cells). The results indicate that the downregulation of the gene encoding ribophorin [corrected] II (RPN2), which is part of an N-oligosaccharyl transferase complex, most efficiently induces apoptosis of MCF7-ADR cells in the presence of docetaxel. RPN2 silencing induced reduced glycosylation of the P-glycoprotein, as well as decreased membrane localization, thereby sensitizing MCF7-ADR cells to docetaxel. Moreover, in vivo delivery of siRNA specific for RPN2 markedly reduced tumor growth in two types of models for drug resistance. Thus, RPN2 silencing makes cancer cells hypersensitive response to docetaxel, and RPN2 might be a new target for RNA interference-based therapeutics against drug resistance.
von Willebrand factor (vWF) is a multimeric plasma glycoprotein with three tandem A domains. Domains A1 and A3 bind to platelet glycoprotein Ib␣ (GPIb␣) and collagen, respectively. Domain A2 contains the Tyr-1605-Met-1606 bond that is cleaved by the metalloprotease ADAMTS13, and this reaction inhibits platelet thrombus growth. Fluid shear stress increases the rate of cleavage, suggesting that productive interaction with ADAMTS13 requires conformational changes within or near domain A2. The influence of the adjacent A1 and A3 domains was assessed by mutagenesis of a recombinant substrate consisting of domains A1A2A3. Deletion of domain A3 did not affect cleavage by ADAMTS13, whereas deletion of domain A1 increased the rate of cleavage Ϸ10-fold. Similar effects were observed with plasma ADAMTS13 and recombinant ADAMTS13 truncated after the spacer domain. Digestion of A1A2A3 by plasma ADAMTS13 was enhanced to a similar extent by a recombinant mutant fragment of platelet GPIb␣ that binds with high affinity to domain A1 or by heparin. Heparin also increased the digestion of purified plasma vWF. Neither GPIb␣ nor heparin increased the cleavage of substrate A2A3 that lacks domain A1. The results suggest that vWF domain A1 inhibits the cleavage of domain A2, and that inhibition can be relieved by interaction of domain A1 with platelet GPIb␣ or certain glycosaminoglycans. Thus, binding of vWF to its major physiological ligands may promote the feedback inhibition of platelet adhesion by stimulating the cleavage of domain A2 by ADAMTS13 independent of fluid shear stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.