In the last decade, a variety of ribosomally synthesized antimicrobial peptides or bacteriocins produced by lactic acid bacteria have been identified and characterized. As a result of these studies, insight has been gained into fundamental aspects of biology and biochemistry such as producer self protection, membrane-protein interactions, and protein modification and secretion. Moreover, it has become evident that these peptides may be developed into useful antimicrobial additives. Class IIa bacteriocins can be considered as the major subgroup of bacteriocins from lactic acid bacteria, not only because of their large number, but also because of their activities and potential applications. They have first attracted particular attention as listericidal compounds and are now believed to be the next in line if more bacteriocins are to be approved in the future. The present review attempts to provide an insight into general knowledge available for class IIa bacteriocins and discusses common features and recent findings concerning these substances.
Bacteriocins are heat-stable ribosomally synthesized antimicrobial peptides produced by various bacteria, including food-grade lactic acid bacteria (LAB). These antimicrobial peptides have huge potential as both food preservatives, and as next-generation antibiotics targeting the multiple-drug resistant pathogens. The increasing number of reports of new bacteriocins with unique properties indicates that there is still a lot to learn about this family of peptide antibiotics. In this review, we highlight our system of fast tracking the discovery of novel bacteriocins, belonging to different classes, and isolated from various sources. This system employs molecular mass analysis of supernatant from the candidate strain, coupled with a statistical analysis of their antimicrobial spectra that can even discriminate novel variants of known bacteriocins. This review also discusses current updates regarding the structural characterization, mode of antimicrobial action, and biosynthetic mechanisms of various novel bacteriocins. Future perspectives and potential applications of these novel bacteriocins are also discussed.
The influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota was monitored in 26 infants including five antibiotic-treated (AT) subjects orally administered a broad-spectrum antibiotic for the first 4 days of life and three caesarean-delivered (CD) subjects whose mothers were intravenously injected by the similar type of antibiotics in the same period. The faecal bacterial composition was analysed daily for the first 5 days and monthly for the first 2 months. Terminal restriction fragment length polymorphisms in the AT subjects showed less diversity with the attenuation of the colonization of some bacterial groups, especially in Bifidobacterium and unusual colonization of Enterococcus in the first week than the control antibiotic-free infants (AF, n = 18). Quantitative real-time PCR showed overgrowth of enterococci (day 3, P = 0.01; day 5, P = 0.003; month 1, P = 0.01) and arrested growth of Bifidobacterium (day 3, P = 0.03) in the AT group. Furthermore, after 1 month, the Enterobacteriaceae population was markedly higher in the AT group than in the AF group (month 1, P = 0.02; month 2, P = 0.02). CD infants sustained similar, although relatively weaker, alteration in the developing microbiota. These results indicate that antibiotic exposure at the beginning of life greatly influences the development of neonatal intestinal microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.