The weight of synaptic connections, which is controlled not only postsynaptically but also presynaptically, is a key determinant in neuronal network dynamics. The mechanisms controlling synaptic weight, especially on the presynaptic side, remain elusive. Using single-synapse imaging of the neurotransmitter glutamate combined with super-resolution imaging of presynaptic proteins, we identify a presynaptic mechanism for setting weight in central glutamatergic synapses. In the presynaptic terminal, Munc13-1 molecules form multiple and discrete supramolecular self-assemblies that serve as independent vesicular release sites by recruiting syntaxin-1, a soluble N-ethylmaleimide-sensitive-factor attachment receptor (SNARE) protein essential for synaptic vesicle exocytosis. The multiplicity of these Munc13-1 assemblies affords multiple stable states conferring presynaptic weight, potentially encoding several bits of information at individual synapses. Supramolecular assembling enables a stable synaptic weight, which confers robustness of synaptic computation on neuronal circuits and may be a general mechanism by which biological processes operate despite the presence of molecular noise.
Background-Several clinical studies of statin therapy have demonstrated that lowering low-density lipoprotein (LDL) cholesterol prevents atherosclerotic progression and decreases cardiovascular mortality. In addition, oxidized LDL (oxLDL) is suggested to play roles in the formation and progression of atherosclerosis. However, whether lowering oxLDL alone, rather than total LDL, affects atherogenesis remains unclear. Methods and Results-To clarify the atherogenic impact of oxLDL, lectin-like oxLDL receptor 1 (LOX-1), an oxLDL receptor, was expressed ectopically in the liver with adenovirus administration in apolipoprotein E-deficient mice at 46 weeks of age. Hepatic LOX-1 expression enhanced hepatic oxLDL uptake, indicating functional expression of LOX-1 in the liver. Although plasma total cholesterol, triglyceride, and LDL cholesterol levels were unaffected, plasma oxLDL was markedly and transiently decreased in LOX-1 mice. In controls, atherosclerotic lesions, detected by Oil Red O staining, were markedly increased (by 38%) during the 4-week period after adenoviral administration. In contrast, atherosclerotic progression was almost completely inhibited by hepatic LOX-1 expression. In addition, plasma monocyte chemotactic protein-1 and lipid peroxide levels were decreased, whereas adiponectin was increased, suggesting decreased systemic oxidative stress. Thus, LOX1 expressed in the livers of apolipoprotein E-deficient mice transiently removes oxLDL from circulating blood and possibly decreases systemic oxidative stress, resulting in complete prevention of atherosclerotic progression despite the persistence of severe LDL hypercholesterolemia and hypertriglyceridemia. Conclusions-OxLDL has a major atherogenic impact, and oxLDL removal is a promising therapeutic strategy against atherosclerosis. Clinical Perspective p 83Oxidative stress might play critical roles in many diseases. In particular, oxidation of LDL might be a key step in the development of atherosclerosis. 4 -6 Oxidized LDL (oxLDL) has been proposed to be involved in many atherogenic changes in the vascular wall such as expression of adhesion molecules, migration of macrophages and smooth muscle cells, release of chemokines, 7 and impairment of endothelial nitric oxide production. 8 Importantly, oxLDL is incorporated into macrophages via receptor-mediated endocytosis, leading to macrophage transformation into foam cells and thus the plaque formation of atherosclerotic lesions. Furthermore, oxLDL itself reportedly induces oxidative stress in endothelial cells, smooth muscle cells, and macrophages, resulting in a vicious cycle of atherogenic plaque formation. 9 the effectiveness of antioxidant therapy against atherosclerosis is controversial. 10 -15 In addition, antioxidants may inhibit not only oxLDL formation but also many other oxidationsensitive pathways. Therefore, it is unclear that the antiatherogenic effects of antioxidants, if any, are due to inhibition of oxLDL formation. Thus, whether lowering oxLDL alone, rather than total LDL, affects ...
Live imaging of exocytosis dynamics is crucial for a precise spatiotemporal understanding of secretion phenomena, but current approaches have serious limitations. We designed and synthesized small-molecular fluorescent probes that were chemically optimized for sensing acidic intravesicular pH values, and established that they can be used to sensitively and reliably visualize vesicular dynamics following stimulation. This straightforward technique for the visualization of exocytosis as well as endocytosis/reacidification processes with high spatiotemporal precision is expected to be a powerful tool for investigating dynamic cellular phenomena involving changes in the pH value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.