Our aim was to elucidate the site and mechanism responsible for reactive hyperemia in coronary circulation. In in vivo beating canine hearts, microvessels of the left anterior descending coronary artery (LAD) were observed through a microscope equipped with a floating objective. Flow velocity of the LAD was measured with a suction-type Doppler probe. The LAD was occluded for 20 or 30 seconds and then released, and reactive hyperemia was observed before and after 8-phenyltheophylline (7.5 mg/kg i.v.) or glibenclamide (200 micrograms/kg into the LAD) infusion. During the occlusion, only arterial microvessels smaller than 100 microns in diameter dilated. Dilation of those vessels was partially attenuated by 8-phenyltheophylline and completely abolished with glibenclamide. In the early phase of reactive hyperemia, all arterial microvessels dilated, and the magnitude of peak dilation was greater in vessels smaller than 100 microns compared with those larger than 100 microns. Vasodilation during reactive hyperemia ceased within 60 seconds in vessels smaller than 100 microns but was sustained for more than 120 seconds in those larger than 100 microns. 8-Phenyltheophylline did not change peak dilation of arterial microvessels but reduced dilation after the peak. Glibenclamide remarkably attenuated dilation of all arterial microvessels in the whole phase of reactive hyperemia. These results indicate that all arterial microvessels are responsible for reactive hyperemia after coronary artery occlusions of 20-30 seconds, but there is greater participation of vessels smaller than 100 microns in the early phase of reactive hyperemia. Dilation of vessels larger than 100 microns assumes an important role in the later phase. ATP-sensitive K+ channels mediate dilation of arterial microvessels both in brief ischemia and reactive hyperemia.
CGRP preferentially dilates the coronary arterial microvessels > 100 microns in diameter but has only a small effect on those < 100 microns. Endogenous CGRP does not modulate the tone of coronary arterial microvessels during acute myocardial ischemia in beating canine hearts.
Levcromakalim heterogeneously dilates coronary arterial microvessels via the opening of ATP sensitive potassium channels, and small vessels are more sensitive to levcromakalim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.