Large deformations of soft elastic beads spinning at high angular velocity in a denser background fluid are investigated theoretically, numerically, and experimentally using millimeter-size polyacrylamide hydrogel particles introduced in a...
Large deformations of soft elastic beads spinning at high angular velocity in a denser background fluid are investigated theoretically, numerically, and experimentally using millimeter-size polyacrylamide hydrogel particles introduced in a spinning drop tensiometer. We determine the equilibrium shapes of the beads from the competition between the centrifugal force and the restoring elastic and surface forces. Considering the beads as neo-Hookean up to large deformations, we show that their elastic modulus and surface energy constant can be simultaneously deduced from their equilibrium shape. Also, our results provide further support to the scenario in which surface energy and surface tension coincide for amorphous polymer gels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.