Excessive evaporative loss of water from the topsoil in arid-land agriculture is compensated via irrigation, which exploits massive freshwater resources. The cumulative effects of decades of unsustainable freshwater consumption in many arid regions are now threatening food-water security. While plastic mulches can reduce evaporation from the topsoil, their cost and nonbiodegradability limit their utility. In response, we report on superhydrophobic sand (SHS), a bio-inspired enhancement of common sand with a nanoscale wax coating. When SHS was applied as a 5 mm-thick mulch over the soil, evaporation dramatically reduced and crop yields increased. Multi-year field trials of SHS application with tomato (Solanum lycopersicum), barley (Hordeum vulgare), and wheat (Triticum aestivum) under normal irrigation enhanced yields by 17%-73%. Under brackish water irrigation (5500 ppm NaCl), SHS mulching produced 53%-208% higher fruit yield and grain gains for tomato and barley. Thus, SHS could benefit agriculture and city-greening in arid regions.
Post-harvest storage of grains is crucial for food and feed reserves and facilitating seeds for planting. Ironically, post-harvest losses continue to be a major food security threat in the developing world, especially where jute bags are utilized. While jute fabrics flaunt mechanical strength and eco-friendliness, their water-loving nature has proven to be their Achilles heel. Increased relative humidity and/or precipitation wets jute, thereby elevating the moisture content of stored seeds and causing fungal growth. This reduces seed longevity, viability, and nutritional value. To address this crucial weakness of jute bags, we followed a nature-inspired approach to modify their surface microtexture and chemical make-up via alkali and wax treatments, respectively. The resulting wax-coated jute bags (WCJBs) exhibited significant water-repellency to simulated rainfall and airborne moisture compared to control jute bags (CJBs). A 2 months-long seed storage experiment with wheat (Triticum aestivum) grains exposed to 55%, 75%, and 98% relative humidity environments revealed that the grains stored in the WCJBs exhibited 7.5–4% lesser (absolute) moisture content than those in the CJBs. Furthermore, WCJBs-stored grains exhibited a 35–12% enhancement in their germination efficacy over the controls. This nature-inspired engineering solution could contribute towards reducing post-harvest losses in the developing world, where jute bags are extensively utilized for grain storage.
Irrigated agriculture in arid and semi-arid regions is a vital contributor to the global food supply. However, these regions endure massive evaporative losses that are compensated by exploiting limited freshwater resources. To increase water-use efficiency in these giga-scale operations, plastic mulches are utilized; however, their non-biodegradability and eventual land-filling renders them unsustainable. In response, we have developed superhydrophobic sand (SHS) mulching technology that is comprised of sand grains or sandy soils with a nanoscale coating of paraffin wax.Here, we investigate the effects of 1 cm-thick SHS mulching on the evapotranspiration and phenotypic responses of tomato (Solanum lycopersicum) plants as a model system under normal and reduced irrigation inside controlled growth chambers.Experimental results reveal that under either irrigation scenario, SHS mulching suppresses evaporation and enhances transpiration by 78% and 17%, respectively relative to the unmulched soil. Comprehensive phenotyping revealed that SHS mulching enhanced root xylem vessel diameter, stomatal aperture, stomatal conductance, and chlorophyll content index by 21%, 25%, 28%, and 23%, respectively, in comparison with the unmulched soil. Consequently, total fruit yields, total dry mass, and harvest index increased in SHS-mulched plants by 33%, 20%, and 16%, respectively compared with the unmulched soil. We also provide mechanistic insights into the effects of SHS mulching on plant physiological processes. These results underscore the potential of SHS for realizing food-water security and greening initiatives in arid regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.