The availability of the first prototypes of quantum computers, in 2016, with free access through the cloud, brought much enthusiasm to the research community. Yet, programming said computers is difficult. One core challenge is the so called qubit allocation problem. This problem consists in mapping the virtual qubits that make up a logical quantum program onto the physical qubits that exist in the target quantum architecture. To deal with this challenge, we have proposed one of the first algorithms to solve qubit allocation. This algorithm, together with its ensuing formulations, is today available in the Enfield compilera concrete product of this work. Our first paper in this field, titled Qubit Allocation, has inspired much research, and our latest qubit allocation design, called Bounded Mapping Tree, stands out today as one of the most effective qubit allocators in the world.
Irrigated agriculture in arid and semi-arid regions is a vital contributor to the global food supply. However, these regions endure massive evaporative losses that are compensated by exploiting limited freshwater resources. To increase water-use efficiency in these giga-scale operations, plastic mulches are utilized; however, their non-biodegradability and eventual land-filling renders them unsustainable. In response, we have developed superhydrophobic sand (SHS) mulching technology that is comprised of sand grains or sandy soils with a nanoscale coating of paraffin wax.Here, we investigate the effects of 1 cm-thick SHS mulching on the evapotranspiration and phenotypic responses of tomato (Solanum lycopersicum) plants as a model system under normal and reduced irrigation inside controlled growth chambers.Experimental results reveal that under either irrigation scenario, SHS mulching suppresses evaporation and enhances transpiration by 78% and 17%, respectively relative to the unmulched soil. Comprehensive phenotyping revealed that SHS mulching enhanced root xylem vessel diameter, stomatal aperture, stomatal conductance, and chlorophyll content index by 21%, 25%, 28%, and 23%, respectively, in comparison with the unmulched soil. Consequently, total fruit yields, total dry mass, and harvest index increased in SHS-mulched plants by 33%, 20%, and 16%, respectively compared with the unmulched soil. We also provide mechanistic insights into the effects of SHS mulching on plant physiological processes. These results underscore the potential of SHS for realizing food-water security and greening initiatives in arid regions.
Irrigated agriculture in arid and semi-arid regions is a vital contributor to the global food supply; however, these regions endure massive evaporative losses that are compensated by unsustainable freshwater withdrawals. Plastic mulches have been used to curtail evaporation, improve water-use efficiency, and ensure food–water security, but they are non-biodegradable and their disposal is unsustainable. We recently developed superhydrophobic sand (SHS), which comprises sand grains with a nanoscale wax coating that could offer a more sustainable mulching solution. Here, the effects of adding a 1.0 cm-thick layer of SHS mulch on the evapotranspiration and phenotypic responses of tomato (Solanum lycopersicum) plants are studied under normal and reduced irrigation. Under both irrigation regimes, SHS mulching suppressed evaporation and enhanced transpiration by 78% and 17%, respectively relative to the bare soil. Overall, SHS mulching enhanced root xylem vessel diameter, stomatal aperture, stomatal conductance, and chlorophyll content index by 21%, 25%, 28%, and 23%, respectively. Total fruit yields, total dry mass, and harvest index increased in SHS-mulched plants by 33%, 20%, and 16%, respectively than in bare soil. These findings demonstrate the potential of SHS to boost irrigation efficiency in water-limited environments and provide mechanistic insights behind yield enhancement by SHS mulching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.