Humans and animals are exposed to aflatoxins, toxic carcinogenic fungal metabolites, through consumption of contaminated food and feed. Aspergillus flavus, the primary causal agent of crop aflatoxin contamination, is composed of phenotypically and genotypically diverse vegetative compatibility groups (VCGs). Molecular data suggest that VCGs largely behave as clones with certain VCGs exhibiting niche preference. VCGs vary in aflatoxin-producing ability, ranging from highly aflatoxigenic to atoxigenic. The prevalence of individual VCGs is dictated by competition during growth and reproduction under variable biotic and abiotic conditions. Agronomic practices influence structures and average aflatoxin-producing potentials of A. flavus populations and, as a result, incidences and severities of crop contamination. Application of atoxigenic strains has successfully reduced crop aflatoxin contamination across large areas in the United States. This strategy uses components of the endemic diversity to alter structures of A. flavus populations and improve safety of food, feed, and the overall environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.