Annual decreases in soybean (Glycine max L. Merrill) yield caused by diseases were estimated by surveying university-affiliated plant pathologists in 28 soybean-producing states in the United States and in Ontario, Canada, from 2010 through 2014. Estimated yield losses from each disease varied greatly by state or province and year. Over the duration of this survey, soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) was estimated to have caused more than twice as much yield loss than any other disease. Seedling diseases (caused by various pathogens), charcoal rot (caused by Macrophomina phaseolina (Tassi) Goid), and sudden death syndrome (SDS) (caused by Fusarium virguliforme O’Donnell & T. Aoki) caused the next greatest estimated yield losses, in descending order. The estimated mean economic loss due to all soybean diseases, averaged across U.S. states and Ontario from 2010 to 2014, was $60.66 USD per acre. Results from this survey will provide scientists, breeders, governments, and educators with soybean yield-loss estimates to help inform and prioritize research, policy, and educational efforts in soybean pathology and disease management.
Humans and animals are exposed to aflatoxins, toxic carcinogenic fungal metabolites, through consumption of contaminated food and feed. Aspergillus flavus, the primary causal agent of crop aflatoxin contamination, is composed of phenotypically and genotypically diverse vegetative compatibility groups (VCGs). Molecular data suggest that VCGs largely behave as clones with certain VCGs exhibiting niche preference. VCGs vary in aflatoxin-producing ability, ranging from highly aflatoxigenic to atoxigenic. The prevalence of individual VCGs is dictated by competition during growth and reproduction under variable biotic and abiotic conditions. Agronomic practices influence structures and average aflatoxin-producing potentials of A. flavus populations and, as a result, incidences and severities of crop contamination. Application of atoxigenic strains has successfully reduced crop aflatoxin contamination across large areas in the United States. This strategy uses components of the endemic diversity to alter structures of A. flavus populations and improve safety of food, feed, and the overall environment.
Aspergillus flavus, the primary causal agent of aflatoxin contamination, includes many genetically diverse vegetative compatibility groups (VCGs). Competitive ability during infection of living maize kernels was quantified for isolates from 38 VCGs. Kernels were inoculated with both a common VCG, CG136, and another VCG; after 7 days (31 degrees C), conidia were washed from kernels, and aflatoxins and DNA were extracted from kernels and conidia separately. CG136-specific single-nucleotide polymorphisms were quantified by pyrosequencing; VCGs co-inoculated with CG136 produced 46 to 85 and 51 to 84% of A. flavus DNA from kernels and conidia, respectively. Co-inoculation with atoxigenic isolates reduced aflatoxin up to 90% and, in some cases, more than predicted by competitive exclusion alone. Conidia contained up to 42 ppm aflatoxin B(1), indicating airborne conidia as potentially important sources of environmental exposure. Aflatoxin-producing potential and sporulation were negatively correlated. For some VCGs, sporulation during co-infection was greater than that predicted by kernel infection, suggesting that some VCGs increase dispersal while sacrificing competitive ability during host tissue colonization. The results indicate both life strategy and adaptive differences among A. flavus isolates and provide a basis for selection of biocontrol strains with improved competitive ability, sporulation, and aflatoxin reduction on target hosts.
Annual decreases in corn yield caused by diseases were estimated by surveying members of the Corn Disease Working Group in 22 corn-producing states in the United States and in Ontario, Canada, from 2012 through 2015. Estimated loss from each disease varied greatly by state and year. In general, foliar diseases such as northern corn leaf blight, gray leaf spot, and Goss's wilt commonly caused the largest estimated yield loss in the northern United States and Ontario during non-drought years. Fusarium stalk rot and plant-parasitic nematodes caused the most estimated loss in the southern-most United States. The estimated mean economic loss due to yield loss by corn diseases in the United States and Ontario from 2012 to 2015 was $76.51 USD per acre. The cost of disease-mitigating strategies is another potential source of profit loss. Results from this survey will provide scientists, breeders, government, and educators with data to help inform and prioritize research, policy, and educational efforts in corn pathology and disease management. Accepted for publication 26 August 2016.
Annual reductions in corn (Zea mays L.) yield caused by diseases were estimated by university Extension-affiliated plant pathologists in 26 corn-producing states in the United States and in Ontario, Canada, from 2016 through 2019. Estimated loss from each disease varied greatly by state or province and year. Gray leaf spot (caused by Cercospora zeae-maydis Tehon & E.Y. Daniels) caused the greatest estimated yield loss in parts of the northern United States and Ontario in all years except 2019, and Fusarium stalk rot (caused by Fusarium spp.) also greatly reduced yield. Tar spot (caused by Phyllachora maydis Maubl.), a relatively new disease in the United States, was estimated to cause substantial yield loss in 2018 and 2019 in several northern states. Gray leaf spot and southern rust (caused by Puccinia polysora Underw.) caused the most estimated yield losses in the southern United States. Unfavorable wet and delayed harvest conditions in 2018 resulted in an estimated 2.5 billion bushels (63.5 million metric tons) of grain contaminated with mycotoxins. The estimated mean economic loss due to reduced yield caused by corn diseases in the United States and Ontario from 2016 to 2019 was US$55.90 per acre (US$138.13 per hectare). Results from this survey provide scientists, corn breeders, government agencies, and educators with data to help inform and prioritize research, policy, and educational efforts in corn pathology and disease management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.