Abstract. The scheduling of jobs on parallel supercomputer is becomhag the subject of much research. However, there is concern about the divergence of theory and practice. We review theoretical research in this area, and recommendations based on recent results. This is contrasted with a proposal for standard interfaces among the components of a scheduling system, that has grown from requirements in the field.
Traditional file structures that provide multikey access to records, for example, inverted files, are extensions of file structures originally designed for single-key access. They manifest various deficiencies in particular for multikey access to highly dynamic files. We study the dynamic aspects of tile structures that treat all keys symmetrically, that is, file structures which avoid the distinction between primary and secondary keys. We start from a bitmap approach and treat the problem of file design as one of data compression of a large sparse matrix. This leads to the notions of a grid partition of the search space and of a grid directory, which are the keys to a dynamic file structure called the grid file. This tile system adapts gracefully to its contents under insertions and deletions, and thus achieves an upper hound of two disk accesses for single record retrieval; it also handles range queries and partially specified queries efficiently. We discuss in detail the design decisions that led to the grid file, present simulation results of its behavior, and compare it to other multikey access file structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.