Utilizing its integrated camera as a spectrometer, we demonstrate the use of a smartphone as the detection instrument for a label-free photonic crystal biosensor. A custom-designed cradle holds the smartphone in fixed alignment with optical components, allowing for accurate and repeatable measurements of shifts in the resonant wavelength of the sensor. Externally provided broadband light incident upon an entrance pinhole is subsequently collimated and linearly polarized before passing through the biosensor, which resonantly reflects only a narrow band of wavelengths. A diffraction grating spreads the remaining wavelengths over the camera's pixels to display a high resolution transmission spectrum. The photonic crystal biosensor is fabricated on a plastic substrate and attached to a standard glass microscope slide that can easily be removed and replaced within the optical path. A custom software app was developed to convert the camera images into the photonic crystal transmission spectrum in the visible wavelength range, including curve-fitting analysis that computes the photonic crystal resonant wavelength with 0.009 nm accuracy. We demonstrate the functionality of the system through detection of an immobilized protein monolayer, and selective detection of concentration-dependent antibody binding to a functionalized photonic crystal. We envision the capability for an inexpensive, handheld biosensor instrument with web connectivity to enable point-of-care sensing in environments that have not been practical previously.
We demonstrate a label-free biosensor imaging approach that utilizes a photonic crystal (PC) surface to detect surface attachment of individual dielectric and metal nanoparticles through measurement of localized shifts in the resonant wavelength and resonant reflection magnitude from the PC. Using a microscopy-based approach to scan the PC resonant reflection properties with 0.6 μm spatial resolution, we show that metal nanoparticles attached to the biosensor surface with strong absorption at the resonant wavelength induce a highly localized reduction in reflection efficiency and are able to be detected by modulation of the resonant wavelength. Experimental demonstrations of single-nanoparticle imaging are supported by finite-difference time-domain computer simulations. The ability to image surface-adsorption of individual nanoparticles offers a route to single molecule biosensing, in which the particles can be functionalized with specific recognition molecules and utilized as tags.
A form of microscopy that utilizes a photonic crystal biosensor surface as a substrate for cell attachment enables label-free, quantitative, submicron resolution, time-resolved imaging of cell-surface interactions without cytotoxic staining agents or temporally-unstable fluorophores. Other forms of microscopy do not provide this direct measurement of live cell-surface attachment localization and strength that includes unique, dynamic morphological signatures critical to the investigation of important biological phenomena such as stem cell differentiation, chemotaxis, apoptosis, and metastasis. Here, we introduce Photonic Crystal Enhanced Microscopy (PCEM), and apply it to the study of murine dental stem cells to image the evolution of cell attachment and morphology during chemotaxis and drug-induced apoptosis. PCEM provides rich, dynamic information about the evolution of cell-surface attachment profiles over biologically relevant time-scales. Critically, this method retains the ability to monitor cell behavior with spatial resolution sufficient for observing both attachment footprints of filopodial extensions and intracellular attachment strength gradients.
We demonstrate the utilization of a smartphone camera as a spectrometer that is capable of measuring Enzyme Linked Immunosorbent Assays (ELISA) at biologically-relevant concentrations with the aid of a custom cradle that aligns a diffraction grating and a collimating lens between a light source and the imaging sensor. Two example biomarkers are assayed using conventional ELISA protocols: IL-6, a protein used diagnostically for several types of cancer, and Ara h 1, one of the principle peanut allergens. In addition to the demonstration of limits of detection at medically-relevant concentrations, a screening of various cookies was completed to measure levels of peanut cross-contamination in local bakeries. The results demonstrate the utility of the instrument for quantitatively performing broad classes of homogeneous colorimetric assays, in which the endpoint readout is the color change of a liquid sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.