Background and Purpose:We initiated the present study to evaluate the clinical value of consecutive concentration determinations of S-100 and glial fibrillary acidic proteins in cerebrospinal fluid from patients with brain infarction.Methods: We took sequential samples of cerebrospinal fluid from 28 patients within 48 hours, at 7 days, and at 18-21 days after the ictus. We measured astroglial protein concentrations using an enzyme-linked immunosorbent assay and also determined size of the infarction (computed tomography), clinical state of the patient (simplified activities of daily living test), blood-brain barrier dysfunction (cerebrospinal fluid/serum albumin ratio), and a myelin marker (myelin basic protein). Results: We found a transient increase of both proteins in the cerebrospinal fluid during the first week after the ischemic stroke (/?<0.05). This increment was significantly correlated with the size of the infarction and the clinical state of the patients.Conclusions: Transient release of astroglial proteins into the cerebrospinal fluid possibly reflects initial focal ischemic damage and, in the later phase, ongoing destruction of astroglial cells in the penumbra zone. We suggest that determinations of cerebrospinal fluid astroglial protein concentrations can be used to estimate ischemic brain damage, which should be of particular value in clinical trials of pharmacological agents, such as calcium antagonists, on stroke patients. (Stroke 1991;22:1254-1258)
In the present study we describe a sensitive ELISA for determination of glial fibrillary acidic protein (GFAP). To validate the method combined determinations of GFAP and S-100 protein were performed in cerebrospinal fluid (CSF) of normal children and children with autism. The GFAP ELISA is of sandwich type and uses the biotin-avidin system. Sensitivity was 16 pg/ml. Between-day precision was 0.079 (coeff. of variance). S-100 protein concentrations were measured using a commercially available ELISA kit. Normal CSF from children and young adults were analysed. The CSF levels of GFAP in normal children were low (16-163 pg/ml). Both GFAP and S-100 protein concentrations correlated with age (P < 0.01 and P < 0.05, respectively), but the GFAP increment was more pronounced, probably reflecting the age-dependent expansion of the fibrillary astrocytes in the central nervous system (CNS). GFAP levels in children with infantile autism were higher than those in normal children of the same age range. S-100 protein concentrations were similar in both groups. High levels of GFAP in combination with normal S-100 protein concentrations in CSF indicates reactive astrogliosis in the CNS. In conclusion, the sensitive ELISA described makes it possible to measure low levels of GFAP present in the CSF of children. Combined assays of GFAP and S-100 protein can be used to discriminate between acute and chronic brain disorders in children.
Rapid head rotation is a major cause of brain damage in automobile crashes and falls. This report details a new model for rotational acceleration about the center of mass of the rabbit head. This allows the study of brain injury without translational acceleration of the head. Impact from a pneumatic cylinder was transferred to the skull surface to cause a half-sine peak acceleration of 2.1 x 10(5) rad/s2 and 0.96-ms pulse duration. Extensive subarachnoid hemorrhages and small focal bleedings were observed in the brain tissue. A pronounced reactive astrogliosis was found 8-14 days after trauma, both as networks around the focal hemorrhages and more diffusely in several brain regions. Astrocytosis was prominent in the gray matter of the cerebral cortex, layers II-V, and in the granule cell layer and around the axons of the pyramidal neurons in the hippocampus. The nuclei of cranial nerves, such as the hypoglossal and facial nerves, also showed intense astrocytosis. The new model allows study of brain injuries from head rotation in the absence of translational influences.
There is little information on threshold levels and critical time factors for blast exposures, although brain damage after a blast has been established both clinically and experimentally. Moreover, the cellular pathophysiology of the brain response is poorly characterized. This study employs a rat model for blast exposure to investigate effects on the neuronal cytoskeleton. Exposure in the range of 154 kPa/198 dB or 240 kPa/202 dB has previously been shown neither to cause visual damage to the brain, nor to affect the neuronal populations, as revealed with routine histology. Here, the brains were investigated immunohistochemically from 2 h to 21 days after blast exposure. A monoclonal antibody was used which detects only the phosphorylated epitope of the heavy subunit of the neurofilament proteins (p-NFH). This epitope is normally restricted to axons, that is, not demonstrable in the perikarya. Eighteen hours after exposure in the 240-kPa/202-dB range, p-NFH immunoreactivity accumulated in neuronal perikarya in layers II-IV of the temporal cortex and of the cingulate and the piriform cortices, the dentate gyrus and the CA1 region of the hippocampus. At the same time, the p-NFH immunoreactivity disappeared from the axons and dendrites of cerebral cortex neurons. The most pronounced immunostaining of neuronal perikarya was found in the hemisphere, which faced the blast source. The perikaryal accumulation of p-NFH was present also at 7 days but the neuronal perikarya had become negative at 21 days, at which time the axons again displayed p-NFH immunoreactivity. Exposure in the range of 154 kPa/198 dB caused similar, although less marked accumulation of p-NFH immunoreactivity in the neuronal perikarya. The findings are interpreted to show a dephosphorylation of NFHs in axons and dendrites and a piling up of p-NFHs in the perikarya due to disturbed axonal transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.