Glacial lake sediments and glacial geomorphology in Valle de las Morrenas, a glacial trough on the north face of Cerro Chirripó, Costa Rica, provide evidence on high-altitude Pleistocene conditions in Central America. The most recent glacier in the valley (Chirripó stage I) receded very rapidly near the end of the Younger Dryas chronozone. Radiocarbon dates on basal organic sediments from lakes beneath upper, middle, and lower limits of that glacier fall close together, and two-sigma calibrated ages overlap for the period 9700–9600 cal yr B.P. Earliest datable transition sediments from the central lake date to 12,360–11,230 cal yr B.P. Larger, older moraines, and associated trimlines, allowed reconstruction of three paleoglaciers (Chirripó stages II, III, and IV). Computer analysis of hypsometry using published tropical-glacier vertical mass balance profiles yields ELAs of 3506–3523, 3515–3537, and 3418–3509 m, respectively; Chirripó II ELA-estimate positions applied to Chirripó I yield an ELA of 3538–3546 m. We infer minimal temperature depressions of 7.4–8.0°C for the Chirripó I–IV stages. Modeling the behavior of modern tropical glaciers yields basinwide net accumulation estimates of 440–620, 550–830, and 960–1760 mm yr−1 for the Chirripó II, III, and IV stages.
The climatic response of trees that occupy closed canopy forests in the eastern United States (US) is important to understanding the possible trajectory these forests may take in response to a warming climate. Our study examined tree rings of 664 trees from five oak species (white ( Quercus alba L.), black ( Quercus velutina Lam.), chestnut ( Quercus prinus L.), northern red ( Quercus rubra L.), scarlet ( Quercus coccinea Münchh.)) from 17 stands in eastern Tennessee, western North Carolina, and northern Georgia to determine their climatic response. We dated the samples using skeleton plots, measured the cores, and compared the site- and regional-level tree-ring chronologies of each separate species with divisional climate data. The oldest trees in each chronology dated back to 203 years for black oak, 299 years for chestnut oak, 171 years for northern red oak, 135 years for scarlet oak, and 291 years for white oak. We successfully developed climate models via multiple regression analyses with statistically significant (P < 0.05) variables representing the Palmer Drought Severity Index and average monthly temperature for most of the site-species chronologies (average R2 = 0.15). All regional climate response models included the Palmer Drought Severity Index from either June or July as the most significant variable in the climate response, suggesting that growing-season drought is the most important factor limiting oak growth in the southeastern US. An increase in temperature and reduction in moisture is likely to reduce their competitiveness in their current locations and force these species to migrate to cooler climates, thereby greatly changing ecosystem health and stability in the southern Appalachians.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.