Proteins are nature’s primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Glioblastoma is a particularly challenging cancer, as there are currently limited options for treatment. New delivery routes are being explored, including direct intratumoral injection via convection-enhanced delivery (CED). While promising, convection-enhanced delivery of traditional chemotherapeutics such as doxorubicin (DOX) has seen limited success. Several studies have demonstrated that attaching a drug to polymeric nanoscale materials can improve drug delivery efficacy via CED. We therefore set out to evaluate a panel of morphologically distinct protein nanoparticles for their potential as CED drug delivery vehicles for glioblastoma treatment. The panel consisted of three different virus-like particles (VLPs), MS2 spheres, tobacco mosaic virus (TMV) disks and nanophage filamentous rods modified with DOX. While all three VLPs displayed adequate drug delivery and cell uptake in vitro, increased survival rates were only observed for glioma-bearing mice that were treated via CED with TMV disks and MS2 spheres conjugated to doxorubicin, with TMV-treated mice showing the best response. Importantly, these improved survival rates were observed after only a single VLP–DOX CED injection several orders of magnitude smaller than traditional IV doses. Overall, this study underscores the potential of nanoscale chemotherapeutic CED using virus-like particles and illustrates the need for further studies into how the overall morphology of VLPs influences their drug delivery properties.
Current approaches to nanoscale therapeutic delivery rely on the attachment of a drug of interest to a nanomaterial scaffold that is capable of releasing the drug selectively in a tumor environment. One class of nanocarriers receiving significant attention is protein nanomaterials, which are biodegradable and homogeneous in morphology and can be equipped with multiple functional handles for drug attachment. Although most protein-based nanocarriers are spherical in morphology, recent research has revealed that nonspherical nanomaterials may have favorable tumor uptake in comparison to their spherical counterparts. It is therefore important to expand the number of nonspherical protein-based nanocarriers that are available. Herein, we report the development of a self-assembling nanoscale disk derived from a double arginine mutant of recombinantly expressed tobacco mosaic virus coat protein (RR-TMV). RR-TMV disks display highly stable double-disk assembly states. These RR-TMV disks were functionalized with the chemotherapy drug doxorubicin (DOX) and further modified with polyethylene glycol (PEG) for improved solubility. RR-TMV displayed cytotoxic properties similar to those of DOX alone when incubated with U87MG glioblastoma cells, but unmodified RR-TMV did not cause any cytotoxicity. The RR-TMV disk assembly represents a promising protein-based nanomaterial for applications in drug delivery.
Azide-alkyne cycloaddition is a powerful reaction for the formation of bioconjugates. When catalyzed by Cu(I) or strain promotion, this cycloaddition is considered to be a "click" reaction with many applications in chemical biology and materials science. We report a new type of azide-alkyne click chemistry for the synthesis of protein conjugates using cucurbit[6]uril (CB6) supramolecular chemistry. CB6-promoted azide-alkyne cycloaddition has been previously used for the synthesis of rotaxanes but has not been applied to the development of complex bioconjugates. By developing new substrates for CB6 click that do not contain any cross-reactive functional groups and by optimizing reaction conditions, we converted CB6 click chemistry from a rotaxane synthesis tool into a useful bioconjugation technique. Using these new parameters, we synthesized a series of protein conjugates including protein-peptide, protein-DNA, protein-polymer, and protein-drug conjugates. We further demonstrated that CB6 click can be used in conjunction with strain-promoted azide-alkyne cycloaddition to generate distinct bioconjugates in protein mixtures. CB6 click is a promising new reaction for the development of protein conjugates and can be applied toward the synthesis of complex biomaterials for a wide range of applications.
Crystalline materials are increasingly being used as platforms for encapsulating proteins to create stable, functional materials. However, the uptake efficiencies and stimuli-responsiveness of crystalline frameworks are limited by their rigidities. We have recently reported a new form of materials, polymer-integrated crystals (PIX), which combine the structural order of protein crystals with the dynamic, stimuli-responsive properties of synthetic polymers. Here we show that the crystallinity, flexibility, and chemical tunability of PIX can be exploited to encapsulate guest proteins with high loading efficiencies (up to 46% w/w). The electrostatic host–guest interactions enable reversible, pH-controlled uptake/release of guest proteins as well as the mutual stabilization of the host and the guest, thus creating a uniquely synergistic platform toward the development of functional biomaterials and the controlled delivery of biological macromolecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.